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11Abstract This paper presents a conceptual analysis of the technological dimensions related
12to the operationalization of CSCL macro-scripts. CSCL scripts are activity models that aim
13at enhancing the probability that knowledge generative interactions such as conflict
14resolution, explanation or mutual regulation occur during the collaboration process. We first
15recall basics about CSCL scripts and macro-scripts. Then, we propose an analysis of some
16core issues that must be made explicit and taken into account when operationalizing macro-
17scripts, such as the reification of some aspects of the script within the technological setting,
18the strategy within which students are presented with the technological setting and the
19uncertainties related to scripts and technological setting perception and enactment. We then
20present SPAIRD, a model that we propose as a means to conceptualize the relations between
21scripts and technological settings used to operationalize them. This model describes four
22points of view on the script (structural model, implementation-oriented model, student-
23oriented models and platform specification) and the underlying design rationale (learning
24hypothesis, pedagogic principle and design decisions). In order to exemplify SPAIRD’s
25usefulness we propose examples of how it allows drawing general propositions with respect
26to the couple script+technological setting. Finally, we present an analysis of current state-
27of-the-art technological approaches with respect to this conceptualization, and research
28directions for the design and implementation of technological settings that present the
29properties identified in our analysis. In particular, we study the interest of model-driven
30approaches, flexible technological settings and model-based script engines.

31Keywords CSCL macro-scripts . Operationalization . Technological setting . Computer science
32

33Introduction

34As defined in Kobbe et al. (2007), CSCL scripts are activity models which aim at
35structuring and supporting collaboration among distant students or co-present students
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36whose action or interaction is (at least partially) mediated by a computer-based system. A
37CSCL script typically describes the task to be achieved by students and issues, such as how
38the task is to be decomposed into subtasks, the sequencing of these subtasks, the role of
39each student, the constraints to be respected and the computer-based system to be used by
40the students. From a general point of view, CSCL scripts take their origin in the fact that the
41effects of collaborative learning depend on the quality of interactions that take place among
42group members (Dillenbourg 1999). CSCL scripts aim at enhancing the probability that
43knowledge-generative interactions, such as conflict resolution, explanation or mutual
44regulation occur during the collaboration process (Kollar et al. 2006), (Kobbe et al. 2007).
45As defined in Kobbe et al. (2007) and Dillenbourg and Jermann (2007), CSCL scripts can
46be dissociated into CSCL macro-scripts and CSCL micro-scripts. CSCL macro-scripts are
47coarse-grained scripts that follow a pedagogy-oriented approach and emphasize the
48orchestration of activities. They differ from micro-scripts, which are finer-grained scripts
49following a more psychological and bottom-up approach.
50With respect to CSCL scripts, the role of the computer-based system is twofold. First,
51the computer-based system is supposed to provide the technological means required by the
52script. For instance, the computer-based system must provide the communication
53functionalities that will allow students to interact, or the specific model that will allow
54them to achieve the modeling task described by the script. Second, the computer-based
55system can also participate in structuring and constraining the students’ process. For
56instance, it can be designed to contribute to structuring the sequences of activities or the
57way students engage in individual and collective activities by introducing a specific
58dataflow or workflow, or provide communication functionalities that impact students’
59interaction by imposing sentence-openers or turn-taking structures. Computer-based
60systems used to operationalize CSCL scripts can be standalone tools (e.g., a communication
61tool or a shared graphic model), all-in-one systems (i.e., systems that provide within a
62dedicated integrated interface different functionalities, e.g., an interactive shared simulation
63coupled with a chat) or platforms (i.e., a set of functionalities/tools made accessible through
64a script-related interface or a generic interface such as the one provided by Learning
65Management Systems). We will use technological setting as a general notion that covers
66these different types of software.
67CSCL scripts raise different research questions, such as defining, modeling and
68operationalizing scripts (cf. for example the work presented in Kobbe et al. 2007),
69experimenting scripts’ effects (cf. for example the work presented in Weinberger et al.
702005) or studying the issues related to their use by practitioners (cf. for example the work
71presented in Hernández-Leo et al. 2005). Our work is related to the operationalization of
72CSCL macro-scripts. We refer to CSCL macro-script operationalization as the process of
73going from an abstract and technologically independent description of the script to the
74effective setting the students will be presented with, i.e. the precise description of the tasks,
75groups, constraints to be respected, and technological setting to be used.
76In this article we focus on the way CSCL macro-scripts’ technological settings should be
77thought of. The general long-term objective of our research is to develop principles,
78methods and technologies for the design and implementation of such technological settings.
79Within this perspective, we think that, as a premise, there is a specific issue in
80conceptualizing the interrelations between macro-scripts and the technological dimensions
81of their operationalization. We refer to a conceptualization model as a model that highlights
82basic notions and issues, and provides a kind of pre-structured map for relating pedagogical
83issues and issues of technology design. This is an intermediary level between technological-
84independent descriptions of the script and precise modeling languages. Such an
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85intermediary level allows script and technological-setting designers to share an intermedi-
86ation (or boundary) model to communicate and think with whilst preventing a too-
87straightforward way of going into a specific fine-grained modeling language. Such a
88conceptualization is a premise because building technological settings to support macro-
89scripts is not just a technological issue, i.e., building a computer-based system that respects
90a definitive set of specifications that are straightforward implications from the macro-script
91technologically independent description; some design decisions are related to both
92educational and technological issues, with these two dimensions influencing each other.
93In order to address this issue, it is necessary to provide a general picture of the relations
94between CSCL macro-scripts and technological settings and how these are thought of, as a
95conceptual means for tackling these two dimensions in an articulated way.
96Within this perspective, we propose the following contributions in this article:

971. An analysis of different issues related to technology that must be taken into account
98when operationalizing macro-scripts: how technology can be used to reify some
99features of CSCL macro-scripts; strategies within which students can be presented with
100the technological setting, and their underlying assumptions; uncertainties related to
101macro-scripts’ perception and enactment (in particular, as related to the dimensions
102related to technology).
1032. A conceptualization model, i.e., a model whose objective is to make salient notions to
104be taken into consideration when considering CSCL macro-scripts’ operationalization.
105This model, called SPAIRD (for Script-PlAtform Indirect Rational Design), helps in
106conceptualizing the relations between the script and the technological setting by
107dissociating four points of view on the script (structural model, implementation-
108oriented model, student-oriented models and technological setting specification) and
109making designers make explicit the underlying design rationale (learning hypothesis,
110pedagogic principle, design decisions). This provides a general understanding of issues
111to be considered, which is helpful by the fact it makes issues to be put on the designers’
112worktable explicit, and provides an intermediation model that may facilitate how (non-
113technical) educators and computer scientists can collaborate to address macro-script
114operationalization. In order to exemplify SPAIRD’s usefulness we propose examples of
115how it allows drawing general propositions with respect to the couple macro-script+
116technological-setting.
1173. With respect to this conceptualization, an analysis of current state-of-the-art
118technological approaches, and research directions for the design and implementation
119of technological settings that present the properties identified in our analysis. In
120particular, we emphasize the interest of model-driven approaches, and of flexible
121model-based script-engines.

123When designing CSCL settings, the properties of the technological setting are but a
124dimension. Taking a wider perspective, Kirschner et al. (2004) propose to focus on
125interaction design and consider technological, social and educational affordances. Strijbos
126et al. (2004) propose a methodology for interaction design based on six steps and five
127critical elements (learning objectives, task type, level of pre-structuring, group size and
128computer-support). Similarly, from an analysis point of view, researches taking their origins
129in Vygostki’s works (e.g., Engeström 1987) highlight that technological settings should be
130thought of in terms of mediating tools, and that a wider activity-centered analysis is
131necessary. Not misunderstanding this, we think the technological and usage dimensions of
132the computer-based system that students use when enacting the script require specific
133attention. Technology is not “neutral” in the sense that any given program (e.g., a modeling
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134tool or a communication tool) carries epistemic primitives via the way it presents users with
135the data or via the objects that users can manipulate within its interfaces. Similarly, the way
136technological settings integrate different functionalities within an interface or support/
137constrain students by a specific workflow has an impact on the way students perceive the
138script and on their enactment of the script (although not necessarily the one that was
139anticipated), and are thus of importance. As highlighted in Jones et al. (2006), “Seen from
140the practice of design, technologies do indeed embody features and properties and they also
141carry meaning. Having been designed with certain purposes in mind, certain understandings
142of communication, interaction and collaboration were embedded in the design process.”
143Within CSCL research, computer science has thus two roles: on the technological side, to
144propose technological means to operationalize CSCL settings; on the conceptual side, on
145the basis of and in interaction with educational and usage research, to elaborate meaningful
146conceptual frameworks that contribute to the understanding of operationalization processes.
147This latter dimension is important to allow operationalization processes that take into
148account dimensions related to the use of technology and the used-technology specificities,
149to define informed specifications of technological settings, and to inform the analysis of
150scripts’ enactment and the re-engineering of scripts. The work presented in this article is of
151this conceptual nature, and takes place within this perspective.
152This article is organized as follows. In “Basics about CSCL scripts” we recall some
153basics of CSCL macro-scripts. In “Implementing macro-scripts” we pinpoint and analyze
154three dimensions that we have identified as core issues to be disentangled, made clear, and
155taken into account when operationalizing macro-scripts: the reification of macro-script
156issues by the technological setting, the principles that underlie the way students are
157presented with the technological setting, and the uncertainties related to macro-script
158perception and enactment. In “SPAIRD: An operationalization-oriented conceptualization
159of the relations between macro-scripts and technological settings” we present SPAIRD, the
160conceptualization model we propose as a general understanding of the notions to be taken
161into consideration when considering the technological dimensions of macro-script
162operationalization. In order to exemplify SPAIRD’s usefulness we propose in “Using SPAIRD
163to make explicit and guide design decisions” examples of how it allows consideration of
164design questions involving dimensions related to both the script and the technological
165setting. Finally, in “A general analysis of technological settings for CSCL macro-script
166operationalization” we first analyze different current approaches to macro-script operation-
167alization and how they can be characterized with respect to the issues raised in this article,
168and then discuss general directions for future CSCL macro-script technological settings as
169model-driven computational engines.
170In this article we focus CSCL macro-scripts. In order to simply the text we will drop the
171“CSCL” and/or the “macro” when not ambiguous.

172Basics about CSCL scripts

173CSCL scripts

174On the basis of the reference article Kobbe et al. (2007) and the works compiled in Fischer
175et al. (2007), we refer to a CSCL script as a model that specifies the specific collaborative
176activities that a group of students are expected to engage in within a computer-mediated
177setting, and the associated supports and constraints. As discussed in Kobbe et al. (2007),
178CSCL scripts take their origin in the scripted cooperation approach (O’Donnell 1999). They
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179foster collaborative learning by shaping the way students will engage in interactions such as
180asking each other questions, explaining and justifying their opinions, articulating their
181reasoning, or elaborating and reflecting on their knowledge. For this purpose, CSCL scripts
182describe and orchestrate individual and collective tasks, the way students should distribute
183roles, the rules to be respected (e.g., deadlines or mandatory means), and the computer-
184based technological setting. Within this context, computers are both a support for students
185to achieve their tasks, and a means to coordinate students’ activities in a way that is
186coherent with the script principles. CSCL scripts are a key mechanism by which computers
187may support collaborative learning (Jermann and Dillenbourg 1999; Kollar et al. 2006;
188Fischer et al. 2007).
189In this article we consider CSCL macro-scripts as a kind of pedagogical method to be
190used in open settings (schools, universities; Dillenbourg and Jermann 2007). CSCL scripts
191can vary from rather psychology-oriented scripts (micro-scripts) to rather pedagogy-
192oriented larger-grained scripts (macro-scripts; Kobbe et al. 2007). A micro-script models a
193process to be internalized by students, and is designed to scaffold the interaction process per
194se. As examples, micro-scripts will make a student state a hypothesis and will prompt a peer
195to produce counter-evidence, or will constrain interactions by prompting turn taking or
196imposing an argumentation grammar (Kollar et al. 2006). A macro-script is rather a
197pedagogical method that aims at producing desired interactions. Macro-scripts are based on
198indirect constraints generated by the definition of the sequence of activities, the
199characteristics of the groups or the technological-setting proposed functionalities and/or
200interface. Macro-scripts aim at triggering high-order thinking activities involving complex
201cognitive processes such as elaborating on content, explaining ideas and concepts, asking
202thought-provoking questions, constructing arguments, resolving conceptual discrepancies
203or cognitive modeling (Kobbe et al. 2007). The macro/micro script differentiation is further
204discussed in “Examples of CSCL macro-scripts,” after examples have been given.

205Examples of CSCL macro-scripts

206We present here below two examples of macro-scripts. Other examples can be found in
207Kobbe et al. (2007) DiGiano et al. (2002) or Fischer et al. (2007).
208The Concept-Grid script (Dillenbourg 2002) is a subclass of the Jigsaw family of scripts,
209i.e., scripts that are based on making individual students manage some partial knowledge
210and then prompting them to collectively solve a problem that necessitates knowledge from
211each of them. Concept-Grid includes four phases. (1) Groups of four students have to
212distribute four roles among themselves. Roles correspond to theoretical approaches of the
213domain under study (e.g., learning theories). In order to learn how to play their roles,
214students have to read a few papers that describe the related theory. (2) Each group receives
215a list of concepts to be defined and distributes these concepts among its members. Students
216write a 10–20 line definition of the concepts that were allocated to them. (3) Groups have to
217assemble these concepts into a grid and define the relationship between grid neighbors. The
218key task is to write five lines that relate or discriminate between two juxtaposed concepts: if
219Concept-A has been defined by Student-A and Concept-B by Student-B, writing the
220Concept-A/Concept-B link requires Student-A to explain Concept-A to Student-B and vice
221versa. (4) During the debriefing session, the teacher compares the grids produced by
222different groups and asks them to justify divergences. The core functionality of the
223computer-based system that supports Concept-Grid operationalization is the grid-editor that
224provides both support (what students must do is made clear by the line/column structure;
225specific editors are provided) and constraints that impact students’ activity (the number of
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226relations to be defined is not open but constrained by the line/column structure and the ratio
227number of definitions/number of cells; the limited length of the text to be edited constrains
228students to synthesize their analysis; Dillenbourg 2002; Hong and Dillenbourg 2007). The
229latter version of the system supports all aspects of the script edition and enactment (role
230distribution, access to documents, etc.), including functionalities that help the teacher in
231tuning the script and regulating the process (Hong and Dillenbourg 2007).
232The Crossing-Analyses script aims at triggering interactions among pairs (elaborating on
233content, explaining ideas and concepts, asking thought-provoking questions, constructing
234arguments, resolving conceptual discrepancies) by asking groups Gi to elaborate an analysis
235Ai, reorganize groups differently, and then ask a group Gj to elaborate on Ai (and vice
236versa). This general principle can be used to create different scripts: groups in the first
237phase can be limited to one student when groups in the second phase are composed of
238several students, the objective being to make the group elaborate on the basis of its
239individuals’ productions; groups in the second phase can be composed by mixing students
240from the first phase groups, with the objective of making individuals explain the collective
241productions of their origin group; etc. The RSC script (Betbeder and Tchounikine 2003) is
242an example of a large-grained instance of the Crossing-Analyses script. RSC is based on
243three phases (Research–Structure–Confront) which can be repeated several times, the
244output of a phase being the input of the next: (1) each student has to freely research on the
245Internet some information on a given topic and become familiar with it, e.g., ergonomics;
246(2) each student has to structure and/or use the data he/she has recovered according to a
247task, e.g., elaborate a grid of ergonomic principles in order to analyze educational Websites;
248(3) the individuals are grouped and have to elaborate a collective construction from the
249individual productions, e.g., confront the individual grids and collectively construct an
250analysis of some Websites. The computer-based system that supports RSC operationaliza-
251tion provides students with different forms of support: access to the different phase’s
252descriptions; means to discuss and edit a plan of how they intend to tackle each phase’s
253different subtasks (shared plan editor and task editor coupled with a synchronous
254communication tool); awareness functionalities such as means to declare their individual
255advancement; etc. It also carries constraints. For instance, accessing the interface dedicated
256to realizing a task is conditional on the fact that the corresponding task has been collectively
257described previously, which puts pressure on the students to organize themselves explicitly.
258As one can see from these examples, macro-scripts can address fully or partially
259mediated situations. RSC is designed for distance learning students and completely
260meditated by the proposed platform. Concept-Grid embeds phases that take place face-to-
261face and can be partially or completely mediated (e.g., face-to-face discussions can be
262replaced by on-line discussions). In the rest of this article we will focus on the issues related
263to the operationalization of scripts through technological settings, not misunderstanding
264however that some of them can be addressed through mixed modes.
265The macro-script/micro-script differentiation denotes both levels-of-granularity and
266matters-of-concern issues. Dillenbourg and Tchounikine (2007) exemplify the distinction
267with scripts that aim at raising argumentative dialogues. Typically, considering argumen-
268tative dialogues, works referring to the macro-script notion aim at setting up conditions in
269which argumentation should occur (e.g., bring students to build shared answers as in
270ConceptGrid or pair students with opposite opinions as in the ArgueGraph script [Jermann
271and Dillenbourg 2003]) while works referring to the micro-script notion aim at scaffolding
272the interaction process per se (e.g., when a learner brings an argument, the script prompts
273his or her peer to state a counter-argument (Kollar et al. 2006)). These two examples first
274differ by their granularity: a phase in a macro-script is an activity that may last for several
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275hours (or several weeks for a script such as RSC) while when in a micro-script, it may be a
276single conversational turn. This degree of granularity is not binary, and the micro/macro
277distinction can be considered in this dimension as a continuum. However, these two
278examples have very different statuses: ConceptGrid and ArgueGraph are pedagogical
279methods and, when designing and tuning the script and its technological framework, the
280emphasis is on how to make these designed issues to be adopted by the students.
281Differently, script and work emphasis of Kollar et al. is on if and how the model of dialogue
282conveyed by the script is internalized by students. This is a different perspective, and is
283related to different methodologies. Here again this distinction is not binary. For example, a
284script such as RSC is “macro” in terms of granularity but some of its features are
285nonetheless expected to be internalized (e.g., students are expected to internalize concepts
286such as “plan” or “tasks” and/or to build an explicit organization). It can thus be considered
287that there is a continuum in this dimension also, but the emphasis and matters-of-concerns
288are different. In this article we focus on macro-scripts as the type of scripts where our
289concern (interrelation script/technological framework) are the core issue. From this
290perspective, works on macro-scripts can be put into relation (as being from similar level/
291matters-of-concern, although of slightly different objectives) with works related to
292identifying and/or using for design collaboration patterns as defined in Wasson and Morch
293(2000), i.e., recurrent sequences of interaction among members of a team that satisfy
294established criteria for collaborative behaviour (Wasson and Morch 2000; DiGiano et al.
2952002). As macro-scripts of course also require taking into account some operationalization
296technological dimensions, some aspects of this work may also be of interest with respect to
297micro-scripts.

298From CSCL scripts to technological settings

299At a general level, CSCL scripts can be described and understood independently from
300technological issues. As an example, Kobbe et al. (2007) propose a model that allows
301describing scripts in terms of structures (resources, participants, groups, roles, activities)
302and mechanisms (task distribution, group formation and sequencing). Using this model, the
303authors propose an abstract description of different scripts reported in the literature,
304descriptions that can be reused and/or refined and adapted according to a given context.
305Within their technological dimensions, macro-scripts are based on the use by students of
306computer-based systems providing functionalities such as mediated-communication
307functionalities (e.g., possibilities for synchronous communication, asynchronous commu-
308nication, file-exchange or awareness) and task-specific functionalities (i.e., functionalities
309dedicated to the particular tasks to be achieved, e.g., a simulation or an editor of models).
310From a technological point of view, this can correspond to different types of computer-
311based systems, such as all-in-one systems (i.e., systems providing within a dedicated
312integrated interface the different required functionalities), platforms (i.e., systems providing
313access, through a common interface, to the required tools or web services defined as
314building components), or a set of separate stand-alone tools (e.g., a chat tool). Integrative
315software such as all-in-one systems and platforms can propose dataflow and/or workflow
316functionalities, i.e., structure the way students can access data and/or functionalities.
317“Prototypical architectures/approaches used for macro-scripts’ operationalization” presents
318an overview of current major approaches.
319The operationalization of a macro-script, i.e., going from an abstract description of a
320script to an effective setting, can be addressed in very different contexts/manners. As in this
321research we address a general conceptualization level, we will consider the following
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322canonical situation. Given a set of pedagogical objectives and the considered pedagogical
323context, it is decided to provide students with a collaborative task and to structure the way
324students will tackle the task by using a script that makes explicit a sequence of phases, the
325input and output of the phases, the roles of the students, and some constraints. The used
326script can be an original construction or an instance or variation of an abstract script
327reported in the literature. When an abstract script is used, a prototypical process can be to
328edit the script (i.e., modify the abstract script to better fit the present pedagogical goals, e.g.,
329change the order of phases or add/remove a phase), instantiate the script (i.e., “fill” the
330abstract script with the relevant content), and finally set up the session (i.e., specify features
331such as the group composition or the group composition procedure, or the duration for each
332phase; Dillenbourg and Tchounikine 2007).
333This canonical situation is subject to many variations. For instance, the fact the process
334is managed by a teacher rather then a multidisciplinary team introduces issues related to the
335teacher’s competence and ability in managing different levels of abstractions and/or the
336technological dimensions. A teacher may also address his pedagogical objectives by
337different means more or less intertwined with the script, which can be but a part of, or
338overlap with, other social protocols. It can also be noted that structuring the way students
339will tackle the proposed task can correspond to different situations: (1) structure as a
340support (i.e., as a means to succeed in a complex task that would not be successful without
341the script); (2) structure as a constraint (i.e., as a means to force students to a given
342behaviour). These two dimensions are not exclusive one from the other (structure as
343constraint being one implicit way of providing structural support), and may correspond to
344different realities for teachers and students (for instance, students can have no need of the
345proposed support and develop their own approach, what was meant as a support becoming
346a constraint; in such a case this constraint can however still be of a positive effect with
347respect to the overall pedagogic objective, but can also become only counter-productive).
348As our objective is to elaborate a general conceptualization model, we consider the
349aforementioned canonical situation, however not misunderstanding this variety and its
350implications.
351Considering macro-scripts, specific attention is required to the fact that the design of
352macro-scripts and their associated technological settings follows a razor’s edge. The
353purpose of a script is to introduce structure and constraints that will shape collaborative
354interactions. As emphasized in Dillenbourg (2002), if this scaffolding is too weak, it will
355not produce the expected interactions; if it is too strong, it will spoil the natural richness of
356free collaboration. Macro-scripts carry the risk of over-scripting collaboration, i.e.,
357constraining collaboration in a way that makes it sterile (Dillenbourg 2002). This issue
358must be kept in mind when considering the questions raised by the operationalization of
359macro-scripts, such as: How can one use both the script and the technological setting to
360make students perceive and enact the script according to the pedagogical objective? How
361should the technological setting reify or take into consideration the way the script
362sequences different phases? What features of the technological setting (as related to the
363script) should be modifiable if the actual interaction differs from expectations, or if some
364unpredictable events arise? What flexibility students should be provided with in order not to
365be over-constrained whilst keeping the script’s raison d’être and remaining coherent with
366the pedagogical objectives? Such design questions, whose answers will impact the script
367enactment, are related to both educational and technological issues, these two dimensions
368influencing each other.
369Our work aims at contributing to making these issues clearer, as a way to facilitate how
370(non-technical) educators and computer scientists can collaborate to address them. Macro-
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371scripts are used in different social and pedagogical contexts, and there is no point in
372attempting to define a canonical operationalization process and associated guidelines. Our
373objective is, rather, to propose a conceptualization that provides a general understanding of
374the different notions that can/should be considered when addressing the operationalization
375of a script, as a cornerstone for additional and more precise/instantiated specific studies.

376Implementing macro-scripts

377In order to elaborate a general understanding of the different notions that should be
378considered when addressing the technological dimensions of the operationalization of a
379script, a first step is to disentangle different design concerns, and not only technologies. At
380this level, and as a premise, we think the role that designers attribute to technology and their
381view on the use of technology should be made explicit, and not kept implicit within the
382head of designers.
383Technologically related design decisions consider issues such as what functionalities
384would be useful or should be used by students, if and how these functionalities should be
385integrated and/or articulated within a common interface or, when it is considered that no
386pertinent technology already exists, what the specifications of the software to be built are.
387When considering these design issues, the problem to be solved can however be thought of
388in different ways. From this perspective, it is particularly important to dissociate two
389general points of view: (1) the considered problem is that of providing students with the
390functionalities that are necessary to achieve the tasks proposed by the script; (2) the
391considered problem is to continue the objective of structuring students’ collaboration by
392offering technologies whose properties have been studied according to the script and the
393targeted support and constraints. These two points of view are not contradictory, the latter
394addressing a problem that includes the one addressed by the former. However, they denote
395different concerns, and lead to the taking into account of different issues. In particular, they
396heavily impact to what extent technological settings are supposed to reify some aspects of
397the supports and constraints targeted by the script, and the strategies within which students
398are presented with these technological settings.
399Moreover, seen from the perspective of usage, macro-scripts create socio-technical
400settings. Technology impacts the script enactment, but this impact is however not
401necessarily the one that is expected, in particular because of the uncertainties of how
402students will perceive and use the technological setting. It is thus important to take into
403consideration not only the script and the technological setting as considered by designers,
404but also the phenomena related to the effective use of technology.
405In this Section we disentangle and make explicit prototypical approaches to how
406technology can be used to reify some script issues (“Reification of script issues within
407technological settings”) and how students can be presented with the technological setting
408(“Strategy within which students are presented with the technological setting”). Our claim
409is not that all works fall in one or another of the prototypical approaches we highlight.
410Rather, the objective is to propose prototypes as a way for designers to make explicit their
411way of thinking with respect to these issues (by reference or opposition to one or another
412view, or blending views). We then list different issues (related to technology) that may
413contribute to create uncertainties related to macro-script perception and enactment
414(“Uncertainties related to perception and enactment”), and finally propose a discussion
415(“Discussion”). In this Section we remain at the level of how the link script/technological
416settings can be thought of and addressed. A more focused analysis of how different levels
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417of modeling can allow addressing different support functions is discussed in “Prototypical
418architectures/approaches used for macro-scripts’ operationalization,” after we have
419presented our SPAIRD conceptualization model.

420Reification of script issues within technological settings

421Focusing on (1) providing students with the functionalities that are necessary to achieve the
422tasks proposed by the script or on (2) continuing the objective of structuring students’
423collaboration can lead to differing considerations of the particular properties of the
424functionalities or tools provided to students, and of how they are integrated.

425Detailed properties of the used software

426Let us consider for instance the fact that a script requires students to engage in argument
427synchronously. Such a requirement can be thought of as the need to make some
428synchronous textual communication functionalities available for students. The level of
429support and constraint that is addressed is: “allow synchronous exchanges of messages,”
430which indeed allows exchanging arguments. This can be implemented by providing a basic
431chat tool. Differently, the operationalization process can be thought of as the need for
432encouraging students to make their arguments explicit, or to relate their messages to the
433task at-hand. This would require not just any communication tool, but to consider what is
434the specific support proposed by structured communication tools, such as Belvedere
435(Suthers and Weiner 1995), Oscar (Delium 2003), Comet (Soller 2001) or C-Chene (Baker
436and Lund 1997), and how this support complies with the script objective and the overall
437script operationalization. Within this approach to operationalization, the properties of the
438communication tools are considered as means to a specific impact, correlated with the script
439objectives. As highlighted before, this impact can be considered as, or appear to be, a support
440(tools help students to formulate arguments) or a constraint (tools force students to structure
441there messages as arguments), and the effective uses and impacts must be specifically studied.
442Our point is not to advocate the uses or advantages of structured/unstructured communication
443tools, but to illustrate the fact that a given feature of a script can be addressed with different
444matters of concern, and that these matters of concern impact how the detailed properties of the
445used software will be considered and taken into account or not.
446As another example, in the Concept-Grid script (cf. “Examples of CSCL macro-scripts”),
447students are presented with a 4×4 table to fill that reifies de facto the script’s basic
448principle: pairs are presented with a line/column shared editor that suggests a common text
449is to be edited, and that this text must match the notions denoted by the corresponding line
450and column. This grid-editor tool is a key element of the script operationalization: it forces
451students to analyze and relate juxtaposed concepts, imposes a large number of connections
452by fixing the ratio between the number of cells and the number of concepts to be entered in
453the grid, and limits the length of explanations. These different constraints have an impact
454on the students’ interaction (Hong and Dillenbourg 2007). The technological choice
455continues the script overall objective by reifying part of the script principles.

456Integration of functionalities or tools

457Macro-scripts are based on sequencing different phases associated with different tasks or
458subtasks. Therefore, they generally require presenting students with different function-
459alities/tools. Here again, the integration and/or articulation of these different functionalities/
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460tools can be thought of in different ways. Integration can relate to two dimensions:
461accessibility (i.e., the way functionalities or tools are made accessible to students) and
462interoperation (i.e., the way functionalities or tools can be bound together in order to
463propose integrated service, e.g., implement a data-flow that makes some data produced in a
464given phase and/or by an individual made accessible as input for another phase and/or
465another individual). This is related to the way the process dimensions of the script are taken
466into account.
467Let us consider for instance a script stating that students should be presented with means to
468access some pedagogical resources, share some intermediate results with peers, communicate
469with peers, collaboratively build a text and deliver the final result to the teacher.
470The technological dimensions of such a script can be addressed by presenting students
471with an open access to a pool of separate standalone tools providing the functionalities
472required by the script, in this case a file-exchange tool, a chat or a forum, and a
473collaborative whiteboard. Similarly, another approach is to present students with an all-in-
474one system or a platform that provides through its interface a common entry-point to the
475different functionalities or tools. This is integration in the sense of facilitating access to
476functionalities or tools, as natively proposed by Learning Management Systems, for
477example. In both cases, the role assigned to the technological setting is limited to that of
478providing the means that are necessary for the realization of the tasks defined by the script.
479This can be seen as projecting the script on the technological plan (projection in the
480mathematical sense, i.e., reducing the number of dimensions of a structure). What is
481considered at the technological level is an implication of the script in terms of what
482functionalities/tools should be made available. However, the process dimensions of the
483script, such as the sequencing of activities, the link between the output of a task and the
484input of some other, or the grouping issues are not captured.
485Alternatively, such a requirement can be addressed by presenting students with an
486interface that articulates the access to tools/functionalities according to the considered
487script. This is integration in the sense of correlating the process features of the script and the
488technological setting. This can be done at different levels of granularity. As an example, the
489platform used to operationalize the RSC script (Betbeder and Tchounikine 2003) provides
490access to the different tools to be used by students. These tools are however not made
491accessible all at once via a general menu, but according to the script sequencing and its
492objective. For instance, students are guided and constrained by the fact they can only access
493the functionalities to be used to achieve a task after they have defined how they intend to
494tackle this task and have divided it into subtasks and delegated these to specific individuals
495or subgroups, or by the fact the platform manages the data-flow between the different phases.
496The platform also provides integrative interfaces suggesting targeted behaviors (e.g.,
497coupling a shared model and a chat within the same screen in order to incite students to
498build a model collectively). As another example, Haake and Pfister (2007) propose a
499workflow-like approach within which the script is interpreted and run by a software engine
500that prompts students according to the script sequencing, which allows the system to
501control access to data/functionalities. These two examples illustrate different extents and
502different implementation approaches to assigning to the platform the roles of integrating
503functionalities or tools according to the script principles. Within this view, the platform is
504assigned the roles of providing the technological means and influencing the students’
505process and behaviour. The underlying idea is that platforms should not only allow the
506script enactment but also guide this enactment by reifying part of the process suggested by
507the script. The students are presented with an interface that is not generic as in an LMS, for
508example, but script-related.
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509The support functions that can be proposed by the platform that address both the
510students (e.g., guiding, scaffolding or providing awareness functionalities) and the teachers
511(e.g., graphical tools to model the script, support to check the structure of a model, ability to
512simulate a model or automated generation or tuning of the platform from the script model)
513are directly related to the informedness of the script and platform models (Miao et al. 2005).
514This is further discussed in “Prototypical architectures/approaches used for macro-scripts’
515operationalization.”

516Strategy within which students are presented with the technological setting

517Focusing on (1) providing students with the functionalities necessary to achieve the tasks
518proposed by the script or on (2) continuing the objective of structuring students’
519collaboration can also lead to consider differently the strategies within which students are
520presented with the technological setting.
521The operationalization of the script can be thought of as offering students technological
522means within self-service conditions. Such an approach is coherent with addressing the
523problem of providing students with the functionalities required by the script. Within this
524view, the script can provide guidance or hints on how to use these functionalities or
525corresponding tools, but there is no technological decision related to the objective of
526constraining students in their use of the provided technology. This can for instance be
527addressed by platforms such as LMS. In settings where students are technologically
528autonomous, it can even be considered that they can find themselves the appropriate means.
529Alternatively, the operationalization of the script can be thought of as making students
530use the technology that designers/teachers want them to use. Such an approach is coherent
531with the fact that this technology is considered as providing support and/or constraints in
532line with the objectives of the script.
533When the objective is that students should use a given technology, a key question to be
534answered at design time is: what are the reasons that will make students to use this
535technology? Different options exist: because they are asked to do so (it is part of the
536didactical contract [Brousseau 1998]) and this is considered as a sufficient reason; because
537they have no other means; because it appears, or it is possible to convince them that, it is
538more useful to achieve the task they are proposed with; because they have no reasons to use
539another technology; etc. Design decisions (related to both how the script is tuned and how
540the technological setting is defined and presented) should consider these reasons with
541respect to the setting. Different issues must be taken into account, such as the extent to
542which students are used to using technology and their level of technological autonomy
543(which impacts to what extent they are inclined to use a given technology or how pro-active
544they are in deciding what technology they want to use) or the fact that the process is
545monitored by the teacher and the level of granularity of this monitoring (which impacts the
546way teachers can be pro-active in controlling what technology is used and how). As said
547before, when considering these design decisions it must be kept in mind that the extent to
548which the use of the technology is a pedagogic requirement must be put into balance with
549the fact that forcing students to use a given technology can become pedagogically
550counterproductive.
551The Concept-Grid and RSC scripts (cf. “Examples of CSCL macro-scripts”) can be used
552to highlight how settings can be different one from another. In Concept-Grid, students are
553presented with a task that can only be achieved with the provided technology: they must fill
554the grid with the Concept-Grid editor. This is an example where the provided technology is
555the only way to match the script requirements (in this case because the task is explicitly
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556linked to a particular tool). In such a case, not using the provided technology is not an
557option, independent of the fact that the process is monitored step-by-step by the teacher or
558that students would prefer to use other means. In RSC, students (University level) are
559presented with different means to interact, organize themselves, share knowledge and
560elaborate the collective output. However, the script involves distant students, and goes on
561for several weeks. Students are asked to use the technology that has been designed to
562support them and, in general, do so. Interviews however revealed that this was to a certain
563extent linked to the fact they wanted (or acknowledged that they were supposed) to “play
564the game,” and used this technology as part of the didactical contract. Some groups
565organize themselves in a way which is coherent with the proposed technology and, as using
566the technology is not a problem and is a demand from the teachers, they do so. Some other
567groups, however, organize themselves in a way that makes the proposed technology
568become a constraint rather then a support. In such cases they generally become pro-active
569and contextually adopt the means that are the more useful to them.
570In a coarse-grained script run in an open setting and with autonomous students (e.g.,
571RSC), the operationalization of the script must thus be thought of as providing suggestions,
572i.e., attempting to create conditions which favor the fact that students will use the targeted
573means. It is necessary to acknowledge the uncertainties related to the achievement of this
574objective, and the fact that students may use different means than the ones that are
575provided, or may use these in different ways. Technology can be used to introduce
576constraints, e.g., linking input/output of phases or constraining access to some data or
577functionalities/tools. The relevance of these constraints (as with all other constraints) is to
578be studied carefully. For instance, when linking a task and a tool as the only means to match
579the script requirement, what using this tool implies in terms of behaviour should be
580examined. As an example, in the Concept-Grid script, what is technically imposed is the
581fact the students’ answers are entered in the grid and respect its constraints. This constrains
582but does not say anything about the students’ effective process and interactions while filling
583the grid.
584From a technological point of view, presenting students with the functionalities/tools
585they are supposed to use given the script sequencing can be addressed by hand (i.e.,
586orchestrated by the teacher) and/or by the way functionalities and tools are integrated
587(accessibility dimension, cf. “Reification of script issues within technological settings”).

588Uncertainties related to perception and enactment

589Associating a macro-script with a technological setting is a particular case of human
590activity instrumentation. As such, it is subject to different phenomena related to
591instrumentation in general and to macro-scripts specificities in particular. Here we highlight
592three issues related to (1) the perception and use of technology, (2) the fact that one might
593have to deal with unpredicted events and (3) the fact that students may develop self-
594organization. These issues may apply to different extents, and may be interrelated.

595Perception and use of technology

596A general difficulty of designing technological means to support students involved in
597macro-scripts is that technological-setting designers have limited control on how their
598designs will be enacted.
599Following the ergonomic distinction between the notions of task (the prescribed work)
600and activity (what people actually do), Goodyear (2001) emphasizes the fact that teachers
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601set tasks and students interpret the specifications of the task, their subsequent activity being
602a more or less rational response to the task. Activity is related to the task but also to other
603dimensions (e.g., students’ effective motivations or perception that is developed by the
604students of the task to be achieved and the provided technological setting) that evolve in
605time, and are interrelated within systemic relations. The activity that will emerge from the
606confrontation of the students with the task and the technological setting is subject to
607different contingences that may render it unpredictable in its details.
608The unpredictability of usage is partially explained by the concept of affordance. The
609importance of this concept has recently been raised in the context of CSCL (Jones et al.
6102006). First introduced by Gibson and then popularized in the Human–Computer
611Interaction (HCI) community by Norman (Norman 1999) with a slightly different
612definition, the affordance notion denotes the natural or design aspect of an object which
613suggests how the object should be used (see McGrenere and Ho 2000 for a comprehensive
614compared analysis of the affordance notion different definitions, and Jones et al. 2006 for a
615CSCL point of view). The affordance notion helps in understanding that the fact that
616designers have limited control over how their designs will be enacted is not a matter of
617“good” or “bad” design. The characteristics of the technological setting will be picked up in
618different ways by students, who will appropriate them according to their purposes, and in
619context.
620More generally, considering that a computer-based system (a platform, a tool) is
621appropriate for students on the premise that it has been designed with respect to the task to
622be achieved by these students is a rather techno-centered view. Applied to the context of
623students confronted with socio-technical settings as a particular case of instrumented
624activity, theoretical frameworks such as the activity theory (Engeström 1987) or the
625instrumental-genesis theory (Rabardel 2003) help in understanding that students take
626advantage of the means that seem best adapted to them in the context of their activity.
627Within this perspective, designers create artifacts on the basis of how they imagine their
628future use. An artifact only becomes an instrument for its user, in the context of his activity,
629by the fact it allows this user to achieve the tasks he considers, and in the way he considers
630them: it is the user that gives the status of instrument to the artifact. According to Rabardel,
631the instrument can thus be seen as constructed from the artifact (the technical object), but
632also from the user that assigns it some functions in the context of its activity, in a double
633process of instrumentation (adaptation of the user to the artifact constraints) and
634instrumentalization (attribution by the user of functions to the artifact, functions that may
635correspond or differ from those anticipated by the designer). An instrument must thus be
636considered as composed of a technical dimension (the artifact), originating from the design
637process, and a psychological dimension (the usage schemes, specific to the user and/or
638socially defined) developed by the user, in use. Works in ergonomics on this artifact/
639instrument dichotomy demonstrate that the artifact impacts but does not define the
640instrument (Rabardel 2003). In other words, software functionalities and properties must
641not be considered as passively received by actors in a form that corresponds to those that
642underline their design, but as co-constructed by these actors, in the context of their activity,
643according to their expectations and needs, and thus with psychological, historical and
644cultural dimensions. From a software design point of view, this suggests the interest of end-
645user tailorable software (cf. “Technological-setting flexibility”).
646These works help in understanding that students’ perception and enactment of CSCL
647scripts and their use of the provided technological means are intrinsically situated, and
648therefore difficult to predict. From a technical point of view, a computer-based system is
649associated with functionalities (a chat allows synchronous exchange of text-based sentences
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650between different computers; a shared model proposes a set of notions that can be
651manipulated, e.g., “definition” or “argument,” means to organize them graphically on the
652interface and means for different connected users to access the model; etc.). These
653functionalities can be range from general presentations (as described previously) to formal
654and unambiguous representations. This functional dimension however only defines a
655technological offer. The fact that students appropriate to themselves the underlying
656assumptions (e.g., that students will use the presented shared model, will associate the
657model notions with a semantics that is similar to that of the designers’ or will interact while
658editing the model) is not a given.
659To what extent students are prone to develop unexpected perceptions and/or uses of
660technology is a question that has no general answer, and must be studied case by case. It
661may be hypothesized that it can be put into relation with different issues raised in the
662preceding sections, such as the level of granularity of the script, the technological-
663integration options, reasons why students would use the provided technology or the strategy
664used to present students with this technology. Taking as examples our experiences with the
665RSC script, different and unexpected uses taking place in relation to the emergent nature of
666activity can be listed: use of communication functionalities as means of perception for
667mutual presence or actions; use of a given functionality to edit a result (elaborated via other
668means) when this functionality and its underlying notions had been designed as means to
669elaborate the result, thought of as a “support for thinking,” and considered as a vector for
670the targeted learning; means designed to allow editing a result used as a “support for
671thinking”; change in the way the environment is used due to the evolution of motivations
672(and, thus, effective activity), for example from «playing the game of the didactic contract
673and using the platform to meet the teacher’s demand» to «deal with urgency and produce
674the expected result (whatever the means are)»; etc.

675Dealing with unpredicted events

676Macro-scripts, as a particular kind of pedagogical method, are intrinsically related to open
677issues that cannot be fully defined or predicted. It is not possible to exhaustively list and
678consider all the pedagogical parameters of a macro-script situation. As a consequence,
679when monitoring the script as it is enacted by the students, the teacher often has to manage
680unexpected events (originating from inside or outside the script), manage requests from the
681students that will lead him/her to consider script’s or technological-setting’s modifications,
682or use a pedagogical opportunity that appears (Dillenbourg and Tchounikine 2007). As
683examples, teachers may want or need to modify, at run-time, decisions taken when tuning
684the script: change the groups because a student drops out of the course or because two
685conflicting leaders emerge from a group and sterilize interaction; postpone some deadlines
686in order to deal with external or internal reasons (network failure, bad appreciation of the
687task difficulty, etc.); change the script structure (change the order of phases, add or remove
688a phase, merge some tasks, change the argumentation tool because students face problems
689with it); etc. (Dillenbourg and Tchounikine 2007). This creates uncertainties related to
690macro-scripts’ enactment, to be taken into account when studying the technological
691dimensions.

692Students’ self-organization

693In the Computer-Supported Collaborative Work field, organization is defined as the meta-
694level activity that aims at maintaining a more or less stable pattern of cooperative
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695arrangement between people engaged in a collaborative work, which requires the
696elaboration of an artifactual and/or psychological instrument crystallizing the cooperative
697activity motives and means (Schmidt 1990).
698Although CSCL scripts’ objective is to introduce a structure, macro-scripts may still
699leave space for some students’ self-organization to emerge (Tchounikine 2007). This space
700is correlated to the script granularity; almost null in micro-scripts, students’ self-
701organization may become a core issue and require a specific interest in coarse-grained
702scripts. For instance, in project-based scripts such as RSC, students can and do become
703active in decomposing tasks into subtasks, delegating roles or managing time. To some
704extent, they complete and/or adapt the script. Students’ self-organization may however also
705impact shorter scripts. For instance, a script may fix issues such as grouping students and
706stating they have 3 h to achieve a given task (e.g., edit the final grid in ConceptGrid). Such
707a constraint still leaves open different organizational possibilities: students can decide to
708spend 1 h each on the same issue (or on different issues) and then share their thoughts; they
709can decide to adopt a more structured process and explicitly split the 3 h into different
710phases (e.g., brainstorming, elicitation, argumentation and decision); they can use different
711communication tools with different specificities (e.g., whiteboard or chat); etc.
712Student self-organization is not a component of a script, but an abstract object, that
713emerges from the way students enact the script, and may vary run to run. Following the
714arguments presented here, some organizational issues are constrained by the script and
715some others are left open and may take origins in different issues (e.g., individual
716characteristics of students, social issues within the group such as the emergence of a leader,
717institutional context or experience or technological setting).
718In addition to the obvious fact that students’ emergent self-organization should not
719contradict the script’s pedagogical objectives, scripts that leave space for such emerging
720organization carry a tension between different issues. Macro-scripts suppose a high
721engagement and a kind of agreement between the teachers and the students and among the
722students (a kind of “didactical” contract in the sense of Brousseau 1998): there is an
723assumption that students will “play the game” and appropriate the script principles to
724themselves. Easy appropriation has been identified as a criterion for script design
725(Dillenbourg 2002). However, when the fact that how people appropriate to themselves
726and/or develop a shared understanding of a structure is generally related to how much the
727structure has been collectively constructed and/or refined, scripts (and thus the organization
728issues they carry) are defined by teachers. Another issue is that when organization is
729fundamentally a structure that emerges, is unstable and evolves during activity, some script
730issues carrying organization-related features may be reified by the technological setting,
731here again with the risk of making technology become a counter-productive constraint.
732Self-organization is thus another example of uncertainties related to macro-script enactment
733that it is important to take into account when studying the technological setting.

734Implications

735How students will perceive the technological setting (and even the script presentation or
736teachers’ explanations) and/or enact the script may be to some extent subject to
737unpredictability. Moreover, the technological-settings’ characteristics may be picked up in
738different ways by students, who will appropriate them according to their purposes, and in
739terms of their own current interests or needs. How a student will perceive the script and the
740technological setting can thus not be defined, though it can be impacted by the fact it takes
741part of its origins in the script structure and presentation, and in the technological setting.
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742Other phenomena such as students developing a self-organization or teachers having to deal
743with unexpected events also participate in macro-script perception and enactment
744unpredictability. It is important to note that these emergent and sometimes unexpected
745uses can not simply be addressed by an iterative design process that would, after a certain
746number of iterations, allow fixing the «standard» use of the technological setting. The same
747technological setting proposed to similar groups of students may be used very differently
748according to features such as group dynamics (leader, conflicting leaders, etc.) or the fact
749(related to different itineraries or individual differences) that the students have different
750representations of the setting.
751The technological setting associated with a macro-script is thus to be studied with
752respect to how it supports and/or impacts activity in a way that is coherent with both (1) the
753objective of scripting and (2) the uncertainties related to perception and enactment. These
754conclusions are in line with more general analyses, such as that of Jones et al. (2006), who
755“… suggest a flexible approach to design in which designed artifacts are thought of as
756shells, plastic forms that incline users to some uses in particular but are available to be
757taken up in a variety of ways and for which the enactment of preferred forms depends upon
758the relationships developed in relation to learning.”

759Discussion

760A macro-script can and must be first defined at an abstract, technologically independent
761level. When operationalizing it, different design decisions must be made, some of which
762relate to technology. These technological dimensions can be addressed in various ways,
763from a very abstract approach, limited to identifying the functionalities necessary to achieve
764the tasks proposed by the script, to very detailed studies of how technology can participate
765in structuring student collaboration according to the targeted script objectives, or of how the
766uncertainties related to perception or enactment of scripts should be taken into account. In
767order to allow inter-comprehension amongst the different actors involved in the
768operationalization process, and to facilitate knowledge accumulation, it is thus of core
769importance to make explicit matters of concern and ways issues, such as the script
770reification, the way students are presented with the technological setting or the uncertainties
771related to perception or enactment are thought of. To what extent technological dimensions
772are considered as means for the supports and constraints targeted by the script can be
773related to different issues: matter of concern (e.g., approaches focusing on the social
774dimensions of the script or focusing on the technological conditions of its enactment); level
775of granularity of the script (the properties of a given tool only become pertinent if they can
776be put into relation with some detailed principles of the script); setting features (e.g., young
777children in school or university students acting in an open setting and able to use whatever
778means they prefer); etc. We do not claim that using the technological setting to reify script
779principles is necessarily the best approach, but that the role and expectations related to the
780technological setting should be made explicit.
781From the point of view of collaboration, macro-scripts witness the tension between
782instructional design and socio-cultural approaches (Dillenbourg and Tchounikine 2007).
783The same kind of tension appears at the level of how technology can be used to participate
784in structuring the process. Within CSCL scripts, focus is not on the task output (e.g., the
785common document to be produced by students) but on the process (e.g., what happened
786during the elaboration of the document, such as arguments, exchanges or common
787understanding elaboration). In some situations, forcing students to use a given technology
788can become counter-productive. At the same time, if a communication tool or a workflow
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789has been designed or chosen because its use is supposed to suggest or support a given
790behavior, how this tool is used is an issue. This differs from settings where what is
791important is the produced output, whatever the means and the process are.
792When considering technology as a way to continue scripting or, at least, as a dimension
793that has an impact on student enactment of the script, the coherence between the features
794carried out by the technological setting and the script’s overall objective is an important
795issue that must be addressed explicitly. First, in addition to the way the teacher explains
796what is to be done and how, students may also perceive the script from the way the
797technological setting reifies it (this can be asynchronously, if the script is orally or textually
798proposed first and the technological setting introduced later on, or synchronously, if the
799script description is embedded in the technological setting). The script and the technological
800setting are two sources of information, support and constraints that are perceived in an
801interrelated way by students, and both influence the students’ perception and understanding
802of the script. The technological setting and the script must thus be studied in order to have
803(as far as can be predicted and using iterative analyses) a coherent and articulated impact on
804the students’ understanding and perception. A minimal requirement is that technological
805settings must provide students with the necessary technological means in a way that is not
806incoherent with the pedagogic intentions, unnecessarily constraining or confusing. Second,
807technology plays a role related to the type of behaviour it allows, suggests, supports or
808makes impossible. When considering the objective of scripting student processes, different
809(non exclusive) means can thus be used from which (1) the script (tasks and subtasks,
810sequencing, constraints, etc.), (2) the way the teacher participates in the orchestration of the
811script (providing directions, controlling access to resources, orchestrating and regulating
812students’ activities, etc.), and (3) the technology-related design decisions used as a way to
813support students and/or regulate their process. Such decisions can be related to the
814properties of the functionalities and tools presented to students and/or the way they are
815presented (e.g. features related to their integration within articulated interfaces, their
816conditional access using data-flow or workflow processes or to what extent students are
817provided with flexibility).
818This analysis brings us to the conclusion that when considering the operationalization of
819macro-scripts, the refinement and tuning of the script and the technological setting should
820be analyzed in an interrelated manner and thought of as articulated resources. This requires
821a general conceptualization-model that helps in making salient the dimensions to be taken
822into consideration. We propose such a model in the next section.
823Acknowledging that macro-script operationalization involves different intertwined
824dimensions (e.g. social protocols or technology issues) and has to deal with uncertainties
825suggests consideration of the notion of indirect design (Jones et al. 2006). Within CSCL
826macro-scripts, indirect design captures the idea that defining the script and the technological
827setting features and properties must be thought of as means to influence student activity,
828and this activity (and the impact of the design issues) must be taken into consideration as it
829happens, and not as it was predicted by designers. Addressing the elaboration of the script+
830technological setting couple is not a one-shot problem. During first elaboration a certain
831number of issues can be defined, but others may only be addressed as hypotheses (e.g.,
832flexibility requirements or student perception). Design must thus be addressed iteratively,
833and benefit from longitudinal studies confronting design models and students’ effective
834interaction patterns. At this level, an important issue is that experiences should be repeated,
835in order to attenuate the bias introduced by the problems that any user encounters when
836presented with new software. And the inherent unpredictability of some issues must be
837acknowledged.
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838SPAIRD: An operationalization-oriented conceptualization of the relations
839between macro-scripts and technological settings

840Objective and issues

841Seen from the perspective of the design of technological settings, macro-script
842operationalization can be viewed as follows. Macro-scripts are first described at an abstract
843and technology-independent level. They are based on explicit pedagogic principles that
844define (more or less precisely) foundations, principles and constraints for instantiating the
845script in a given setting, and make the according design decisions (defining the pre and post
846activities, the groups’ composition, the tuning of the different phases, the way the script is
847presented to students, etc.) from which the design decisions related to the technological
848setting. In order to enact the script and achieve their tasks and subtasks, students are
849presented with a technological setting. The role of this technological setting can go from
850just providing functionalities that allow achieving the task to participating in the structuring
851of the student process. It can be more or less integrated, and in different ways. It may have
852an influence on how the script is perceived by students, and this dimension must thus be
853taken into account in order to avoid contradictions and/or complement suggesting the
854targeted behavior. In certain cases, students may be given certain latitude, as a pedagogical
855strategy and/or as a way to acknowledge script enactment uncertainties. Consequently,
856macro-scripts and/or technological settings should be to some extent flexible. Different
857(intertwined) reasons may encourage teachers/designers to consider flexibility, for example:
858an explicit pedagogical choice of providing self-service conditions; the fact that the setting
859limits the way constrained conditions can be created (e.g., distant autonomous students); the
860objective of proposing suggestions that are thought of as shaping collaborative interactions
861whilst avoiding over-constraining the setting and student collaboration (i.e., emphasizing
862the fact students play the script within a context defined by the script’s constraints and the
863technological setting, rather than the fact the technological setting plays the script and
864prompts student actions).
865Within this perspective, our work addresses the research question: What dimensions
866should be put on the worktable when considering the technological dimensions of macro-
867script operationalization? The proposed contribution is a conceptualization model (called
868SPAIRD) that disentangles different dimensions/notions involved in macro-script operation-
869alization, and allows making explicit the issues and features to be considered and the
870matters of concern. This is proposed as a basis to facilitate how (non-technical) educators
871and computer scientists can collaborate to address script operationalization and make
872detailed operationalization decisions when selecting, customizing or constructing the
873script’s technological setting. It is also a basis from which to identify/develop specific
874tools (e.g., specific modeling languages) addressing a specific given issue.
875The proposed model aims at acting as a descriptive and informative framework for the
876design and architectural structuring of technical support systems, taking into account the
877general analysis presented in “Implementing macro-scripts.” From this perspective, it is an
878intermediate construction between (1) works that consider as an entry point educational
879issues (e.g., works such as Kirschner et al. (2004) or Strijbos et al. (2004), cf.
880“Introduction”) and (2) works that focus on a given technology/framework or a given
881precise modeling language. The addressed level is thus that of a conceptual framework, that
882provides a kind of pre-structured map for relating pedagogical issues and issues of
883technology design. We believe this has a value in itself, as a tool for thinking, and as an
884intermediate work towards the specification and implementation of precise modeling
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885languages targeting advanced support functions and/or design methodologies (cf.
886“Prototypical architectures/approaches used for macro-scripts’ operationalization”).
887As macro-scripts are associated with platforms rather than standalone tools we will use
888the wording platform with the general meaning of a computer-based system that provides/
889integrates different functionalities or tools. This can correspond to an all-in-one system (i.e.,
890a system that provides different functionalities within a dedicated integrated interface) or a
891platform in the usual sense (i.e., a set of components or tools made accessible from a
892common interface).

893General presentation

894The analysis presented in “Implementing macro-scripts” made salient the fact that the
895operationalization of a macro-script requires considering different interrelated perspectives.
896Operationalizing such scripts must therefore be thought of as a complex problem, i.e., a
897problem that involves different issues interacting one with the other in a systemic way, and
898that cannot be reduced to any of these issues (Lemoigne 1990). Following the theoretical
899background of complex-systems, this kind of problem must be addressed on the basis of
900multiple points-of-view and models denoting different perspectives (including partially-
901redundant perspectives) on the considered objects.
902Within this perspective, we propose a model called SPAIRD (for Script-PlAtform Indirect
903Rational Design). The objective of this model is to propose a general conceptualization (a
904general picture) that helps designers in defining what is to be taken into consideration when
905selecting, customizing or designing macro-script technological settings in order to (1) avoid
906problems and constraints arising from technology and/or (2) attempt to use the script and the
907technological setting as coherent articulated vectors targeting the students’ expected
908behavior. As such, it is a descriptive and informative framework for the design and
909architectural structuring of technical support systems. It makes salient a number of
910dimensions, notions and issues in a way that is complementary with, on one side, more
911educationally or psychologically oriented models of scripts, and, on the other side,
912operational languages and technologies. In “A general analysis of technological settings
913for CSCL macro-script operationalization” we explore how this model leads to addressing
914technological setting implementation and processing principles.
915SPAIRD disentangles the different following notions:

9161. Structural model of the script
9172. Implementation oriented model of the script
9183. Platform specification
9194. Student oriented models of the script and platform
9205. Design rationale (learning hypothesis, pedagogic principles, design decisions)

921The first four notions denote different but non-independent viewpoints. In software
923engineering, a viewpoint is a technique for abstraction using a selected set of concepts and
924rules in order to focus on particular concerns and build viewpoint models, i.e., a
925representation from the perspective of the chosen viewpoint (MDA 2003). SPAIRD addresses
926design issues and considers perspectives and models related to the script components
927(structural model), the script implementation, the platform specification and the
928presentation of the script to students. Similar to approaches such as UML (UML 2006),
929models are considered here as means to (1) make designers and analysts consider a given
930issue by the fact that this issue is outlined and (2) help them to study the issue by
931proposing a set of notions and/or a modeling language. As a conceptualization model, SPAIRD
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932addresses the first dimension (outlining issues) and not the second (providing a specific
933language for each model), which is a different question, and for which different existing
934works can be reused. The four models outlined by SPAIRD are not to be considered one
935after the other but simultaneously and in a systemic way, although some models (typically,
936the structural model) will be considered but not necessarily closed before some others. The
937fifth notion (design rationale) denotes the rationale behind the elaboration of the four
938preceding models.
939Figure 1 presents a general overview of the proposed model. Block A corresponds to the
940design rationale, i.e., the principles and decisions that underlie the script modeling. Block B
941corresponds to the different models of the script to be elaborated. Block C denotes the
942platform issues. Block D corresponds to the students’ perspective. We focus on the script
943and platform issues, thus targeting design models and not student-behavior models. Whilst
944not deeply examined in this article, block D’s presence is meant to remind one that the
945script and platform only define a set of propositions whose perception and use by students
946are linked to many other different issues, such as individual, social or institutional issues.

947The sub-models

948As stated previously, our focus is on arguing for the importance of making these models
949explicit, and not on proposing specific modeling languages. Different existing languages
950can be used for some of these models. Elaborating a set of coherent holistic modeling
951languages for all the different outlined models, if necessary, is part of a longer research
952agenda. Therefore, we will remain at a conceptual level and only introduce a few examples
953with links to existing modeling languages or interesting related approaches for the sake of
954clarification.

pedagogic principles

design decisions

extrinsic constraints

intrinsic constraints

Block A: Design Rationale

informs the design or selection of a platform 
or customization of an existing platform 

regulation

making 
explicit design 

decisions

learning 
hypotheses

students’ global 
perception

script
and platform
presentation

offers  and manages
defines 

script 
dynamics 

presentation

platform
tools

and interface

initializes structural model 
of the script

platform specifications

student oriented 
models of the script 

and platform

implementation 
model of the script

Block D: students’ centered issues

Block B: specification models

Block C: platform issues

platform actual properties

external issues
(individual, social, institutional, etc.)

PLATFORM engine

actual interaction 
pattern

Fig. 1 The SPAIRD model
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955Structural model of the script

956The structural model is a description of the components of a script. This point of view
957corresponds to an analysis in terms of what is to be defined when designing a script, i.e., a
958set of notions and, possibly, relations linking these notions.
959In order to exemplify the idea whilst not going into the details of a specific language, we
960present in Fig. 2 a (voluntarily trivial) example of a structural meta-model, i.e., a language
961that denotes script components. Different languages addressing this structural dimension
962have been proposed in literature. For instance, Kobbe et al. (2007) identify groups,
963participants, roles, activities and resources as the basic components of a script, dissociating
964these components from the script mechanisms (group formation, component distribution
965and sequencing, that we refer to as the implementation model). Hernández-Leo et al. (2006)
966describe how the notions underlying the general educational modeling language IMS-LD
967(IMS-LD 2003) can be used to model CSCL script structure, and LDL (Ferraris et al. 2007)
968is presented as an alternative to LD for collaborative settings.
969A structural description of a script does not denote dynamic issues such as data-flow,
970tasks sequencing, group-formation or role-attribution mechanisms. It however already
971allows denoting part of the script’s characteristics. For instance, considering the flexibility
972issue, phases are unlikely to be flexible since they define the script’s general structure.
973Similarly, whether a task is individual or collective or the interaction mode (face-to-face or
974via communication tools) is often determined by the structure, unlike issues such as timing.
975In some scripts, the way groups are composed and/or the role attribution can be left open or
976partially open to students. For instance, in a script such as ConceptGrid, students can be
977allowed to compose groups or modify them with respect to the constraint stating that
978groups must be composed of individuals mastering different knowledge. In the context of
979coarse-grained scripts such as RSC, the precise definition of the input and output of the
980different tasks composing a phase can be left open to students when setting the script and/or
981while running it, for instance allowing or even suggesting to students that they can again
982split the proposed subtasks into finer-grained subtasks. According to the way the
983technological setting is thought of, task oriented tools and communication tools can
984become typical candidates for flexibility if one considers that students should be
985contextually able to choose the tools they want. As one can see from these examples, the
986structural model puts some issues to be considered on the worktable, but is not sufficient to
987address them: other analysis dimensions are required.

<Script> ::= <pre structuring activities> <Phase>+ <post structuring activities> 

<Phase> ::= (<Task> <Group> <Mode> <Task oriented tools> <Interaction mode> <Timing>)+ 

<Task> ::= <input> <activity> <output> 

<Group> ::= {individual}+ 

<Mode> ::= individual | collective | collaborative 

<Task oriented tools> ::= specific tools required to perform the task, if any 

<Interaction mode> ::= face to face | <communication tool>+ 

<Communication tools> ::= basic chat | basic forum | basic email | basic electronic whiteboard | 
file exchange zone | specific tool 

<Timing> ::= duration | output delivery deadline 

Fig. 2 A simple structural meta-model (using a BNF-like syntax). “: :=” stands for “is decomposed in,” “|”
stands for “or, ” “*” stands for “zero or several” and “+” for “one or several”
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988Implementation model of the script

989The implementation model of the script is the description of how the script is to be put into
990practice. While the structural view states what the script components are, the implemen-
991tation description states what constraints rule them and how they should be orchestrated. An
992analogy can be made with object-oriented software engineering and the difference between
993modeling the world (the objects and their characteristics) and modeling how the objects and
994characteristics are used to implement a given functionality (the collaboration model).
995The implementation model of the script describes issues such as: group-formation policies
996and dynamics; task sequencing and articulation; the dataflow/workflow ruling the access to
997individual and collective data and/or to functionalities/tools; etc. Such implementation issues
998can be described at different levels. Informal representations may be sufficient is some cases, for
999example when the script is orchestrated by the teacher. Conversely, when the computer-system
1000is meant to run some of these issues, the modeling must go into detail, and a modeling language
1001that is associated with an operational semantics is required. The language proposed in Miao et
1002al. (2005) is an example of an operational language that allows representing implementation
1003models (in fact, representing the structural models and the implementation model at the same
1004time). Another example is proposed in (Haake and Pfister 2007). Such languages propose
1005advanced constructions to model the <activity> notion as denoted in Fig. 2.
1006Considering the implementation model, an important dimension is to dissociate scripts’
1007intrinsic constraints and extrinsic constraints as proposed in Dillenbourg and Tchounikine
1008(2007). Intrinsic constraints are bound to the script’s core mechanisms, e.g., during the
1009collaborative phase individuals must manage different knowledge. Extrinsic constraints are
1010bound to contextual factors, e.g., individuals can be conducted to master prerequisite
1011knowledge following different approaches; different pre/post activities can be added in
1012order to trigger the core mechanisms; group compositions can take different issues into
1013consideration; etc. Extrinsic constraints define the space for flexibility, i.e., the space within
1014which a script should be modifiable by teachers and/or students because the related decisions
1015result from arbitrary or practical choices. Within this perspective, intrinsic constraints set up the
1016limits of flexibility, i.e., what cannot be accepted in order for the script to keep its raison d’être.
1017For instance, if targeting a situation where two students confronted with different initial
1018knowledge should interact, allowing free pairing would violate an intrinsic constraint, and
1019would break the link between the script and the underlying learning principle; conversely, the
1020run-time modification of groups should be allowed and managed (e.g., insuring data
1021coherence) if modifying a group is a possible option for the teacher or the students.
1022Although structural and implementation models are interrelated and in some cases partly
1023redundant, we believe their dissociation and an explicit description of the implementation
1024model are important to avoid indirect strategies and/or implicitness. Let us consider the
1025following crossing mechanism: in phase 1, two groups (or individuals) G1 and G2 work on
1026an issue, and each produce an output; then, in phase 2, each group is asked to elaborate on
1027the content produced by the other group. Taking the structural modeling language proposed
1028in Fig. 2, a workflow issue such as the fact that G1 output of phase 1 is the input for phase
10292 of G2 (and vice versa) can be considered as a straightforward conclusion from the
1030description of the phases. However, this is not the case for all workflow issues. For
1031instance, the fact that during phase 1 the G1 and G2 subgroups must not be aware of each
1032other’s productions as this would spoil phase 2 is not explicit in the structural description.
1033Less trivial examples include detailed sequencing (e.g., task parallelism or task conditional
1034synchronization) or data accessibility (e.g., stating when data and/or functionalities should
1035become available, for instance making what is necessary for the achievement of a task

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9039_Proof# 1 - 26/02/2008



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

1036accessible when, and only when, the preceding task is over) cannot be easily described by a
1037structural description.
1038As structural and implementationmodels are interrelated, they are addressed as such in some
1039works such as Miao et al. (2005). Although dissociating them may appear artificial in some
1040cases, in some others it has the virtue of leading to an analysis of script constraints and of
1041their nature (intrinsic constraints, explicit constraints) in a process that is disentangled from
1042the structural characteristics of the script. From our perspective, this helps in analyzing
1043constraints for what they are, and not via the way they impact structures or are carried by
1044structures. For instance, applying a crossing mechanism over groups (i.e., groups are
1045reorganized when skipping from phase 1 to phase 2) can be denoted by a structural
1046description of phases: during phase 1, G1=(Lucy, Jack) and G2=(Bill, Connie); during phase
10472, G1=(Lucy, Bill) and G2=(Jack, Connie). This principle would however better be denoted
1048by the underlying abstract principle “during phase 2 groups must be constituted with students
1049that were in different groups during phase 1.” Making such principles explicit is a core issue,
1050in particular for (1) studying how they will be taken into account in the different models and
1051not only the structural model and (2) how they can be managed dynamically to comply with
1052flexibility issues, or be overruled. Computer-inspired languages such as the one proposed by
1053Miao et al. (2005) or Haake and Pfister (2007) allow representing and implementing such
1054constraints (as said before, given our research perspective, we will not elaborate here on the
1055fact that these languages’ complexity may make them difficult to use for practitioners; a
1056discussion on this issue can be found in Harrer and Malzahn 2006).

1057Platform specification

1058The platform specification is the set of technical specifications (in the computer-science sense)
1059that the technological setting must comply with. The platform specification is meant to make
1060the technical design decisions drawn from the structural and implementation models explicit.
1061The form of specification that is required greatly depends on the adopted technological
1062approach. If the approach just addresses the objective of providing students with tools, the
1063platform specification is limited to something like “make a chat and a file-exchange system
1064available.” In such a case, it is more or less redundant with the structural model. If the
1065approach considers in more detail the properties and/or integration of the functionalities to
1066be proposed, it is necessary to specify them: data to be represented and manipulated; data-
1067flow and data-access constraints; functionalities; workflow; user interfaces; etc. The way
1068the platform specification is described is related to the computer-based system it will be
1069deployed on, e.g., a generic platform or an ad hoc system (cf. “Prototypical architectures/
1070approaches used for macro-scripts’ operationalization”). In the latter case, this requires
1071computer scientists to build these specifications, using computer science methods and
1072techniques such as the one provided by the Unified Modeling Language UML (UML
10732006), and then build the corresponding system.
1074Coming back to the affordance notion, the platform specification specifies the actual
1075properties of the platform, as an artifact that can be unambiguously described. Defining
1076these properties is the prerequisite step of an iterative and experience-based process that
1077must also take perceived properties and effective usages into account.

1078Student-oriented models of the script and platform

1079The student-oriented models of the script correspond to the dedicated information the
1080students are presented with in order for them to understand the script and the platform. This
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1081is related to the fact that, as noted in “Implementing macro-scripts,” both contribute, in an
1082interrelated way, to the perception of the script and its associated technological setting.
1083Considering the script, two dimensions can be dissociated. The script presentation
1084corresponds to a description of what students are supposed to do. This can be an oral and/or
1085written presentation, presented separately from the platform (via documents or orally) or
1086embedded in the platform. It can be defined according to different strategies, e.g., providing
1087a comprehensive view of the script or presenting phase n when phase n−1 is over. The
1088script dynamics presentation corresponds to a description of what can be understood and
1089represented within the platform of the way the script is enacted by the students. This
1090presentation can be constructed from an automatic analysis of the way students use the
1091platform (using logs and student action analyses) and/or data made explicit by students (e.g.,
1092through advancement declaration) or teachers; it can be limited to some advancement
1093information or extended to advanced awareness issues. This is a dynamic issue, which can be
1094used by students to know where they are (and by teachers to know where students are). These
1095two representations can be merged into a single one such as a global “visualization of the
1096script” initialized by the script presentation and then denoting its dynamics (Berger et al.
10972001). Such advanced dynamic issues generally require specific platform specifications,
1098using usage track analysis models and their transformation towards students’ understand-
1099able representations in the script’s dynamic presentation. In Fig. 1 we have dissociated the
1100script dynamics presentation from the platform tools and interface, but this is essentially for
1101the sake of clarity. Finally, the platform presentation corresponds to a description of the
1102technological means that are proposed to the students.
1103Script and platform presentations can be thought of as what is told to the students in
1104terms of “what” and “how,” on the basis of the structural, implementation and specification
1105models. We have emphasized the importance of dissociating these issues from a conceptual
1106and design point of view. However, when considering instructions and explanations for
1107students, it can be (according to the setting) preferable and/or easier to dissociate these two
1108dimensions or, on the contrary, present them together and in an interrelated way.

1109Design rationale

1110From a general point of view, a design rationale is a representation of the reasoning behind
1111the design of an artifact. Considering the design rationale promotes making explicit the
1112decisions to be taken, the possible alternatives and the reasons for the one chosen. This also
1113helps in accumulating knowledge reusable for settings with similar rationales.
1114In the context of the SPAIRD model, we refer to the script’s design rationale as the
1115principles that underlie the script and its operationalization. Of course, not all principles can
1116be, nor need be, made explicit. As said previously, the point is to select a set of concepts
1117and rules in order to focus on particular concerns (models capture what we can/want to
1118capture from a certain perspective; models are not reality).
1119The design rationale of a script can be addressed at different levels of abstraction. We
1120propose to dissociate learning hypotheses, pedagogic principles and design decisions, going
1121from abstract principles to operational decisions. The learning hypotheses are the
1122considered abstract general hypotheses about how humans learn that form the base of the
1123script. For instance, the learning hypothesis of the Jigsaw family of scripts could be
1124formulated: “students confronted with a problem they cannot solve individually but can
1125solve collectively by sharing knowledge can learn one from each other.” Making this issue
1126explicit is useful for keeping in mind the overall reference; it is however not operational.
1127The pedagogic principles of the script are the principles that originate from the learning
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1128hypotheses and define the spirit of the script. For instance, for the Jigsaw family scripts, it
1129could be formulated: “the learning situation involves n students S1 ... Sn; the n students
1130have to achieve Task T; T requires some knowledge that none of the Si students master;
1131each Si student has some knowledge that is useful to achieve T; the knowledge mastered by
1132the n students together allows the achievement of the task T.” The same learning
1133hypotheses can underline different scripts corresponding to different pedagogic principles,
1134and the same pedagogic principles can themselves be turned into different subclasses or
1135script abstract schemas (e.g., Concept-Grid is but a subclass of Jigsaw) that can themselves
1136be turned into different instantiated scripts (Kobbe et al. 2007). Pedagogic principles define
1137the core principles which, if not respected, would make the script not rely on the learning
1138hypothesis any more. In order to turn these concepts into effective scripts, a set of design
1139decisions must be made and documented. Design decisions denote the rationale underlying
1140the decisions that have been made while defining the structural, implementation,
1141specification and student-oriented models.
1142An intrinsic drawback of multi-points-of-view modeling is to manage coherence.
1143Keeping an explicit trace of design decisions (i.e., the alternatives, the decision and its
1144justification) does not ensure coherence, but is a sine qua non condition (and, as will be
1145advocated in “A general analysis of technological settings for CSCL macro-script
1146operationalization,” a potential means for controlling flexibility issues). One option would
1147be to distribute design decisions over the different models. However, many principles and
1148decisions impact different issues in different models, and grouping design decisions may
1149facilitate the overall coherence management. This remains, however to be studied.
1150When considering design decisions, dissociating intrinsic and extrinsic constraints is an
1151important issue. For instance, within a script that uses a crossing mechanism over groups,
1152there is an intrinsic constraint to be respected for the creation of the groups: if phase 1 aims
1153at making Lucy and Jack familiar with theory A and Connie and Bill familiar with theory
1154B, phase 2 groups must be composed with one student from each of phase 1 groups. This
1155issue must be made explicit. However, whether phase 2 groups are (Lucy, Bill) and (Jack,
1156Connie) or (Jack, Bill) and (Lucy, Connie) is contingent, and can be addressed accordingly,
1157e.g., arbitrarily or according to some extrinsic constraint related to the gender composition
1158of groups. It should be noted that design decisions can be made explicit at different degrees
1159of abstraction. Stating that “Lucy and Bill must be paired” is a low-level constraint. Stating
1160that “pairs must be constituted of students exposed to different knowledge during the
1161preceding phase” is a more abstract constraint that allows more flexibility when running the
1162script if it appears that Lucy and Bill hate each other. An even more abstracted principle
1163would be “pairs must be constituted of students mastering different knowledge.” This
1164would allow more flexibility when running the script if it appears that, although Lucy
1165worked out theory A, she did not develop enough competencies to have knowledge
1166generative interactions with Bill but, as Connie had some quite consistent pre-existent
1167knowledge about A, it is finally preferable to group Connie and Bill. Abstract principles
1168offer more latitude for flexibility. However, they are also more prone to be difficult to
1169represent in an operational way.

1170Student-centered issues (block D)

1171The models we have outlined are useful to support design. Let us however recall that script
1172and platform only define propositions whose perception and enactment by students are
1173linked to many other issues. In Fig. 1 (block D) we have mentioned two rough notions that
1174reflect our concerns: the students’ global perception and the actual interaction pattern (i.e.,
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1175the script as it actually unfolds as a set of activities and interactions taking place among the
1176students (Dillenbourg and Tchounikine 2007). This is sufficient for our matter of concern,
1177but not per se.

1178Using SPAIRD to make explicit and guide design decisions

1179SPAIRD is a conceptualization model that makes salient a number of notions and issues
1180that designers and analysts should put on the worktable when studying macro-script
1181operationalization. The dissociation of different models disentangles issues that are often
1182kept implicit and/or mixed, such as the script’s different dimensions, the interrelations of
1183the script and the technological setting or the vectors that can be used to influence student
1184perception and enactment. The design rationale helps in making explicit the rationale
1185behind the decisions.
1186Such a proposition cannot be evaluated through empirical studies or prototyping but, as
1187a conceptualization that aims at supporting design, it can be questioned in respect to its
1188usefulness. In order to show this usefulness, we present here below examples of how
1189SPAIRD allows outlining different issues and drawing general propositions with respect to
1190the couple script+platform.
1191At a general level, SPAIRD helps in outlining issues to be dissociated and documented.
1192For instance, general pedagogic principles and design decisions should be disentangled.
1193These design decisions should be as far as possible dissociated into intrinsic constraints and
1194extrinsic constraints. Any pedagogic issues that are addressed opportunistically as a second
1195objective, e.g., learning to work in groups, could be related to extrinsic constraints.
1196Pedagogic principles, intrinsic constraints and extrinsic constraints should be represented
1197at an abstract level, dissociating abstract principles and context-related knowledge. All the
1198decisions underlying the structural model, implementation model, platform specification
1199and student-oriented models should be made explicit, i.e., documented and justified. The
1200structural model and implementation model elaboration should carefully dissociate the
1201script issues that correspond to “what” (structural model related issues) and “how”
1202(implementation model, and then student-oriented models or platform specification issues).
1203When considering script/platform coherence issues, SPAIRD helps in outlining what
1204issues relate one to the other. For instance, pedagogic principles must be coherent with the
1205learning hypotheses. The intrinsic and extrinsic constraints must be coherent with the
1206pedagogic principles (and thus with the learning hypotheses). The structural model,
1207implementation model, platform specification, student oriented models, script and platform
1208presentation and platform actual properties (which includes the script dynamics
1209presentation and the platform tools and interface) must be kept coherent with intrinsic
1210and extrinsic constraints, and with each other. The platform tools and interface should not
1211impose issues that are or could contradict the structural model, implementation model or
1212student-oriented models. The script dynamics presentation should be updated in real time in
1213order to maintain coherence with the actual interaction pattern.
1214When considering the completeness of the modeling and how the different features form
1215a self-sufficient framework for students, SPAIRD helps in listing issues to be checked. For
1216instance, it can be an objective that the script and platform presentation and the platform
1217actual properties should denote all the structural model and implementation model issues
1218that are necessary for students to understand what they are supposed to do and to do it;
1219another option is to consider these issues with respect to some planned additional regulation
1220by the teacher or the system. Features such as the set of differences between the platform
1221tools and interface and the platform specification should be considered. This can be
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1222addressed by human analysis or on the basis of a model of the platform. For instance, when
1223using a customizable platform, it can be an objective to avoid functionalities that are not
1224useful for the script, in order to limit students’ cognitive charge and potential disorientations
1225or unnecessary browsing; another option is to keep the same general interface from script to
1226script, in order to facilitate platform appropriation.
1227When considering how script reification may be used to contribute, together with the
1228student oriented models, to suggest desired behaviors by influencing student perception and
1229guidance, SPAIRD helps in denoting notions and issues to be considered. For instance, the
1230platform must be studied with respect to the platform specification and to the students’
1231global perception and actual interaction pattern, using psychological and usage experi-
1232ments and/or accumulated experience (possibly, going into subclasses such as students’
1233profiles). This can cause the platform specification and then the platform to be modified, or
1234flexibility to be introduced. The platform should reify platform specification issues that
1235originate (via the structural and implementation models) in intrinsic constraints, i.e., the
1236platform should reify the core mechanisms of the script. Conversely, the platform should
1237not reify platform specification issues that originate in extrinsic constraints, i.e., the
1238platform should not reify any contingent issue. The platform reification of intrinsic
1239constraints should as far as possible be implemented at an abstract level, i.e., implementing
1240the principle and not its application in a given context. Consequently, the platform should
1241propose mechanisms to instantiate the abstract principles according to the particular
1242context.
1243When considering flexibility issues, SPAIRD helps in denoting what components can be
1244considered as candidates for flexibility, and within which constraints. For instance, we have
1245outlined that a structural model denotes different components, some of which can be made
1246flexible. Making explicit the implementation model and the student-oriented models helps
1247in identifying what can be decided or adapted at runtime by the students or teachers whilst
1248remaining coherent with the intrinsic constraints. The platform should then allow and
1249support (i.e., provide functionalities for) the targeted flexibility issues. The platform’s
1250adaptable issues must be highlighted in order for students to be aware of them via the script
1251and platform presentation, and the platform actual properties. This should be checked by
1252questioning the students’ global perception and the effective interaction patterns. The
1253platform should also avoid fixing issues identified as potentially flexible, e.g., the platform
1254should not hard-code data-accessibility rules if roles can be questioned at runtime.
1255When considering student self-organization issues and organization-related flexibility,
1256SPAIRD helps in studying the crucial issue of how much the emergent organization (if any)
1257is coherent with intrinsic constraints. It also helps in working out how, if at all, suggested
1258organizational issues can be studied in the structural model, the implementation model and
1259the student-oriented models, and the corresponding design decisions recorded. In such a
1260case, the script and platform presentation should suggest an organization whilst making
1261clear how flexible it is, and what the students’ latitude is.
1262When considering script enactment, SPAIRD helps by providing notions that allow
1263going further than a simple comparison of the actual interaction pattern with “the script” as
1264a broad notion. For instance, the actual interaction pattern can be analyzed according to
1265different dimensions, such as the script structural model (e.g., phases and tasks), the
1266expected behavior (as denoted by the implementation model and student-oriented models)
1267or the expected use of the platform (platform specification, platform actual properties).
1268This analysis can take into consideration the rationale that underlies these issues (learning
1269hypotheses, pedagogic principles, intrinsic and extrinsic constraints). This allows, for
1270instance, studying to what extent, and why, whether the fact that things went coherently or
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1271differently from the script is positive, negative or neutral with respect to the design
1272rationale. Hypotheses related to the actual interaction pattern can be stated, for instance
1273the influence of different issues (script and platform presentation, script dynamics
1274presentation or platform tools and interface) on students’ global perception and the actual
1275interaction pattern. For example, recurrent students’ global perceptions that do not
1276originate from any design decisions should be made explicit, analyzed and questioned.
1277Accordingly, hypotheses related to potential parameters that can be tuned in order to
1278influence scripts’ perception and enactment can be stated and tested. Whilst SPAIRD is not
1279meant to analyze the interaction per se, it is potentially a useful contribution to analyze the
1280interaction with respect to the design.
1281To conclude this Section, let us recall that the set of propositions here are not proposed
1282as a comprehensive set of guidelines, and can be questioned. They do however illustrate
1283that (1) SPAIRD conceptualization is a useful substratum for creating a general picture that
1284makes salient notions that are often mixed or difficult to refer to, and (2) addressing macro-
1285script operationalization issues requires making references to different notions originating
1286from different points of view, both educationally and technologically orientated.

1287A general analysis of technological settings for CSCL macro-script operationalization

1288In this Section we first analyze different current technological approaches to macro-script
1289operationalization with respect to the issues that arose in this work. It should be noted that
1290these different approaches do not all consider the same objectives or issues. We analyze
1291them as possible technological settings for macro-scripts with respect to how they are meant
1292to be used (not elaborating, for instance, on the fact that a generic tool meant to be used as
1293such can of course be modified by a computer-scientist to match a given different
1294specification). We then analyze the interest and difficulties of the current evolution towards
1295model-driven approaches, and the flexibility issue. We finally present our own view of
1296future platforms as tailorable model-based script-engines as a direction for future works.

1297Prototypical architectures/approaches used for macro-scripts’ operationalization

1298At a general level, CSCL settings can be operationalized using standard technologies, e.g.,
1299workflows. The motivation for using specific software is that standard software is often
1300considered not suitable for students and/or the considered pedagogical setting, i.e., software
1301designed for working processes does not present the suitable properties for learning
1302contexts. We differentiate here different prototypical architectures/approaches that can be
1303used for macro-script operationalization: Learning Management Systems, Content
1304Management Systems, platform generators, operationalization languages and script-specific
1305platforms.
1306Learning Management System (LMS) are general purpose platforms. As such, they do
1307not propose any feature specific to macro-script operationalization. They do, however,
1308allow implementing the self-service approach, i.e., providing students with open access to
1309the functionalities required by the script. LMSs natively propose generic functionalities,
1310such as chat, email, shared agenda or file exchange zone, and most of them allow external
1311tools to be made available from their interface. Within such approaches, due to the fact
1312LMSs are generic general purpose platforms, students are offered a script-independent
1313interface: instructions, tools and resources are made accessible, but the script remains
1314diffuse. With respect to SPAIRD, this can be interpreted as limiting the technological
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1315dimensions of operationalization to (1) selecting a ready-to-use platform that provides the
1316functionalities or tools identified in the structural model and (2) providing students with a
1317script and platform presentation. Some LMSs natively propose and/or can be enhanced
1318with general awareness functionalities, such as indicating information related to students’
1319connections or recent deposit of files or messages. This however remains a limited
1320approach to the script dynamic presentation.
1321Content Management Systems (CMS) are platforms similar to classic LMSs in their
1322generic character but are (as a more recent generation of such systems) generally designed
1323as an integration of modules. This natively allows customization by integrating or
1324withdrawing modules taken from a set of already available ones and/or others designed or
1325modified for the considered context. A generic but often used in educational settings CMS
1326is Zope/Plone (Zope 2006; Plone 2006). The dissociation between the basic Web service
1327(Zope) and the toolkit (Plone) allows an easy creation of customized platform instances.
1328This customization can address the tools issue (selecting tools according to the script) and/
1329or some interface issues. Typically, a generic CMS interface is defined as a default
1330organization of predefined constructs such as tabs or folders. Such an interface can be
1331customized by modifying this organization according to the script: adapting tabs to denote
1332groups/subgroups and or phases/tasks; adopting a specific folder organization to create
1333work zones composed of modules such as a file-exchange zone or communication tools;
1334etc. With respect to SPAIRD, using such a CMS can be interpreted as implementing by
1335hand the platform specification, the script and platform presentations and the script
1336dynamic presentation with means that correspond to the CMS customization possibilities.
1337For instance, Zope/Plone proposes possibilities to adapt tabs and folders and associate them
1338with access to tools, or to manage document life-cycles (e.g., how a document goes from
1339“private” to “public”). The interesting issue is that this customization is technically easy as
1340it takes place via an administration interface. However, as these customization possibilities
1341are limited, using a customizable CMS does not guarantee that the aspects of the script that
1342designers want to reify can be reified (except, of course, by going into the code).
1343Platform generators are dedicated systems that allow generating or adapting a platform
1344via an education-oriented description of the script (as opposed to a technically oriented
1345description). As a first example, in the Collage–Gridcole approach, teachers are presented
1346with a pattern-based authoring tool that facilitates script modeling. From this description, a
1347platform is generated in the form of an interface to grid services (i.e., services provided by
1348web services) that correspond to the tools required by the script (Hernandez-Leo et al. 2006;
1349Bote-Lorenzo et al. 2004). As another example, the Bricolage approach allows the
1350description of scripts using a graphical description, this description being then used to
1351automatically adapt the code of an existing platform on the basis of a connection between
1352(1) the model of the script and (2) the architectural model of the used platform (Caron et al.
13532005). With respect to SPAIRD, these approaches can be interpreted as providing teachers/
1354designers with an authoring interface corresponding to SPAIRD specification models
1355(structural model, implementation model, platform specification and student-oriented
1356models; in these works, however, these models are not clearly disentangled). To what
1357extent the desired properties of the platform can be obtained via these approaches is related
1358to the focus and level of precision of the modeling languages underlining these authoring
1359tools. In the Collage–Gridcole approach, emphasis is on authoring and facilitating teachers’
1360work. The approach is based on the use of the educational modeling-language IMS-LD
1361(Hernandez Leo et al. 2004). LD allows listing the functionalities requested by a script. This
1362first step is somewhat similar to selecting what components should be made available
1363within a CMS, with however the central advantage of doing this via teacher-dedicated
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1364authoring tools. LD also allows representing some aspects of the SPAIRD implementation
1365model, such as the flow of activities or the role distribution, though not in a straightforward
1366and complete way (Hernandez-Leo et al. 2007; Miao et al. 2005). This allows running the
1367script with a LD-compliant engine (cf. infra), such as CopperCore (CopperCore 2007).
1368With respect to SPAIRD, this corresponds to a platform specification that lists the requested
1369functionalities (that will be presented to students in a self-service approach) and/or an
1370implementation model limited, however, to issues that can be represented with LD. Another
1371example of such an approach is the LAMS platform (LAMS 2007) that provides teachers
1372with a graphical editor allowing them to define (very simple) scripts by connecting
1373predefined tools, and then generating from this description a specific interface for the
1374students.
1375Operationalization languages are languages associated with an operational semantics,
1376which allows simulating or running the represented script on a computer. Such languages
1377can be used as a way to implement the details of how scripts should be orchestrated. This
1378includes actions to be achieved before the script is enacted (e.g., composing groups) and
1379during script enactment (e.g., orchestrating phases, re-organizing groups or implementing a
1380workflow). With respect to SPAIRD, this corresponds to the possibility of describing and
1381running detailed implementation models of scripts. An analysis of different modeling
1382languages that can be used to represent such issues (finite automata, statecharts, activity
1383diagrams, Petri nets, BPEL4WS, IMS-LD and Mot+) is proposed in Harrer and Malzahn
1384(2006). The authors emphasize four important dimensions of such languages: (1) the fact
1385that they are familiar and easy to use for practitioners; (2) the fact they propose a graphical
1386representation (here again, this is related to facilitating use); (3) the fact that the language
1387allows modeling at different level of granularity, from the general orchestration of phases to
1388the detailed modeling of interaction patterns; and finally (4) the fact that the language is
1389associated with an operational semantics. Within the perspective adopted in our work, the
1390first three dimensions can be related to producing models that can serve as intermediation
1391objects for multidisciplinary design teams (i.e., boundary objects to think with for non-
1392technical educators and computer scientists). The fact that the implementation model is
1393associated with an operational semantics can be used to simulate and/or run the script with
1394an engine. As stated here, LD allows specifying some dimensions of script implementation
1395models, but not in a straightforward and complete way. Differently, Miao et al. (2005)
1396propose a language that allows a detailed specification of the script, mixing in an
1397operational way what we have dissociated as the structural and implementation models.
1398Based on the computer-science UML formalism (UML 2006), this language is complete
1399enough to model complex structures (e.g., sequencing activities with conditions and loops
1400or managing complex distributions of roles), and is associated with authoring tools. With
1401respect to SPAIRD, this corresponds to adopting a particular definition of the structural
1402model (i.e., the script components) and of the type of implementation model that is targeted
1403(i.e., the type of relations that can be defined between the components, the type of control
1404structures that should be usable, etc.) and then, taking advantage of these choices, to
1405provide the model with an operational semantics and some associated tools (e.g., authoring
1406tool or language player). As another example of adopting a precise definition in order to
1407target operational constructions, Haake and Pfister (2007) propose to describe scripts (roles,
1408possible sequences of actions, etc.) as a finite state automaton, a formalism that allows
1409complex control structures. The script can then be deployed on a platform that is compliant
1410with this formalism. Within such an approach, the platform runs the script and provides
1411access to functionalities or data according to the automata. The script can be modified at
1412any time via its specification, without requiring any hand-modification of the platform,
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1413which provides a certain form of flexibility (within the principle of this approach, i.e., what
1414can be modified is the program that specifies the way the system prompts students).
1415Finally, building script-specific platforms is a way to implement and articulate all aspects
1416of the considered script. The obvious advantage is that it allows taking the different issues
1417raised in the SPAIRD model into account, e.g., articulating script instructions and
1418technological setting design decisions within specific tools (e.g., the Concept-Grid editor),
1419realizing a specific integration of different functionalities within a single screen (e.g., the
1420platform associated with RSC), managing script-specific data-flows and workflows,
1421providing teachers with means to act dynamically on the setting, etc. The obvious
1422drawback is that this approach requires a new platform to be constructed for every new
1423script as a script-specific platform can be reused by changing the resources from one
1424domain to another, but the principles are hard-coded. This drawback can however be
1425limited by introducing tailorability means (cf. “Technological-setting flexibility”) and
1426targeting platforms dedicated to a class of scripts. For instance, a platform could implement
1427the Jigsaw family script’s core mechanisms (e.g., controlling data-flow in order to expose
1428different students to different knowledge, or controlling group composition on the basis of
1429the conflicting criteria) whilst not fixing all the issues as a script-specific platform does.
1430This approach allows implementing core aspects of the script whilst leaving some others
1431open, and not having to construct a new platform for every new script. As an example, a
1432platform that implements Concept-Grid principles whilst leaving different tuning options
1433open to teachers is presented in Hong and Dillenbourg (2007).
1434In (Miao et al. 2005) the authors describe a list of support functions that can be obtained
1435from modeling scripts. These support functions are related to the extent to which these
1436models are understandable by a computer-based system, i.e., the extent to which fact they
1437are described in a formal syntax and associated with an operational semantics. These
1438support functions are: “system as editor/viewer” (using a modeling editor to build
1439intermediation objects for the design team to think with and communicate on), “syntactical
1440mapping to a visual/conceptual representation” (the model can be represented within a
1441specific syntax, which allows checking it with respect to syntax correctness or data-
1442exchanges with other software), “presentation of models in multiple perspectives” (the
1443modeling dissociates different notions—e.g., temporal dimension or role dimension—and is
1444precise enough to allow the system to present and analyze the script according to these
1445points of view), “model-based prediction” (the system can advise the designers—e.g.,
1446highlight constrains or dependencies—with respect to some of the perspectives),
1447“simulation” (the script can be simulated to identify possible issues such a deadlocks),
1448“static configuration of the learning environment” (e.g., tuning a given platform from the
1449script model), “monitoring the learning flow” (e.g., adapting the platform to the script
1450enactment, sequencing the process or providing teachers or students with information on
1451the process) and finally “model-based scaffolding” (e.g., advising learners on the best way
1452to play their role). A conceptualization such as SPAIRD aims at the first level of support
1453(intermediation/boundary objects for the design team to think with and communicate on). It
1454however does not aim at addressing this level through a specific modeling language and
1455associated model editor or viewer, but by just highlighting issues and interrelations, as we
1456believe this intermediary level is also necessary. This is why we refer to it as a
1457conceptualization model: this level allows not going in a too-straightforward way into a
1458precise modeling language. The other side of the coin is that it provides only conceptual
1459support. Conversely, precise modeling languages, such as the one presented in Miao et al.
1460(2005), in particular when connected with visualization tools (Harrer and Malzahn 2006),
1461allow being more precise. They are more complex to use, require adopting the proposed
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1462modeling language notions and principles and going further into detailed design decisions
1463then SPAIRD. The other side of the coin is that they propose in exchange more support
1464(model editor, syntax checker) and (in this case) also advanced functions such as
1465simulation. We see these different levels as complementary alternatives. With respect to
1466support functions taxonomy of Miao et al., works such as Collage–Gricole, Bricolage or
1467LAMS address as a first objective the static configuration of the learning environment
1468objective (LAMS taking advantage of the fact it focuses on simple scripts and predefined
1469embedded functionalities to also support some more advanced support functions).

1470Interests and difficulties of model-driven approaches for platform generation/tuning

1471In this Section we will focus on the support function labeled as “configuration of the learning
1472environment” in Miao et al. (2005). A common point of a conceptualization, such as SPAIRD,
1473several aforementioned approaches to the operationalization of CSCL scripts (in particular,
1474the platform generator and operationalization language approaches) and the current evolution
1475of computer science is to highlight the interest of model-based approaches to support the
1476building of technological settings, and in particular to generate automatically technological
1477settings, which from the perspective of practice and dissemination is indeed an objective.
1478Considering platform generation, the major approach developed in software engineering
1479is called Model Driven Architecture or MDA (MDA 2003). This approach argues for the
1480use of models to direct the course of understanding, design, construction, deployment,
1481operation, maintenance and modification of systems’ computational implementation.
1482MDA’s principle is to use three abstraction levels and model transformation processes:
1483(1) a computer-independent model (CIM) captures the environment and the general
1484requirement for the system is built; (2) the CIM is transformed into a platform-independent
1485model (PIM) that captures the specification issues that do not change from one
1486technological platform to another; (3) finally, the PIM is transformed into a platform
1487specific model (PSM) that combines the platform-independent issues with details related to
1488the targeted platform. These transformations are based on machine-readable application and
1489data models. They aim at automatically creating systems by code generation and/or
1490software-component agglomeration (as opposed to handmade code), which is supposed to
1491facilitate conceptual design, maintenance (including re-deploying the model on the latest
1492hot technology), integration and testing.
1493At a general level, a conceptualization such as SPAIRD is a step forward towards a
1494model-driven approach of script operationalization. As highlighted by the MDA vision, all
1495computational systems (and we could add: all CSCL scripts) are based on some models, but
1496most of these models remain immaterial in the head of the designers and are often created
1497just before, and in the context of, a given operationalization. SPAIRD advocates and provides
1498means to make explicit and use models to direct the course of understanding and design,
1499and to facilitate the operationalization of scripts on current and future platforms. With
1500respect to MDA, pedagogical principles and intrinsic constraints can be classified as
1501computer-independent (CIM level). The structural model, implementation model, platform
1502specification and student oriented models can be classified as platform-independent (PIM
1503level) if described at an abstract level, i.e., if one refers to notions such as “group G1” and
1504not to “Lucy and Bill.” More precisely, the structural model and implementation model can
1505be seen as intermediate models that help in defining the platform specification, which is the
1506transition model from the CIM level to the PSM level. Extrinsic constraints can be
1507platform-independent or platform-dependent (e.g., when using a platform that imposes
1508designers with constraints).
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1509Several of the works we have analyzed here as possible particular and/or partial
1510implementations of SPAIRD (as a general approach) go clearly into the direction advocated
1511by MDA. Proposing patterns and authoring tools that generate an LD description which can
1512then be deployed on an LD-compliant engine as proposed in the Collage–Gricode approach
1513(Hernandez-Leo et al. 2007) is a straightforward step in this direction. Within this line of
1514research, a core issue is that of what can be done in terms of automated transformations of
1515an abstract model into an operational system. In Collage–Gricode, this is addressed at the
1516level of orchestrating activities and providing access to the webservices that have been
1517identified as functionalities useful for students, which is but an approach to integration. This
1518can appear to be too limited if complex dynamic role distribution, data-accessibility flows
1519or specific integration of functionalities within screens are required. The approach
1520developed in Bricolage (Caron et al. 2005) is based on the use of the Meta Object Facility
1521Specification (MOF 2007), which allows computer-science models to be exported from one
1522application, imported into another, transformed, and used to generate application code.
1523Theoretically, this allows building a piece of software that (1) maps the two models
1524corresponding to (a) a specification of the targeted technological setting (the platform
1525specification) and (b) an abstract model of a given piece of software (e.g., an LMS), and
1526then to (2) automatically transform the code of this piece of software to make it comply
1527with the platform specification, via a model-transformation process. This is however at
1528present still a software engineering research issue.
1529SPAIRD as such can not be classified as a CIM. As highlighted previously, it is a
1530descriptive and informative framework and is not associated with an operational semantics;
1531it can thus not be used as such for automated transformations. Although fully convinced by
1532the power of MDA-like approaches and automated model transformations, we believe such
1533processes, by the fact they require precise modeling at early stages of the design of the
1534script and platform, create a risk a too-quick/straightforward crystallization of these models.
1535When the operationalization process is thought of as providing access to tools or
1536functionalities within a basic common interface or with limited integration features (e.g.,
1537LD-like sequencing of activities), automatic transformation of a computer-independent
1538model to a platform-specific model as proposed by the MDA process appears a promising
1539approach. Automatic transformation may also appear powerful for addressing a limited
1540specific concern (e.g., transformation of an interface or management of groups) for which a
1541modeling language associated with an operational semantics can be identified as
1542satisfactory. Such requirements remain in the scope of what can be, given the current
1543technical state-of-the-art, managed automatically. Not misunderstanding this, our view is
1544that macro-script operationalization should be generally addressed through manual (i.e.,
1545human-based) iterative transformations of models, within a process informed by a
1546conceptualization such as SPAIRD and knowledge accumulated and refined through
1547experience, and using modeling languages adapted to the considered setting when this
1548becomes needed and the design is sufficiently advanced. Languages such as the ones
1549proposed by Miao et al. (2005), Haake and Pfister (2007) or LD (IMS-LD 2003) are not
1550universal; they are based on, and carry, design decisions. Using at first a general
1551conceptualization such as SPAIRD allows making explicit the issues and features to be
1552considered, and the matters of concern. This is then a basis to orientate the implementation
1553approach, and in particular the selection of a modeling language whose design options are
1554in line with the considered matters of concern. Such a process greatly benefits from
1555knowledge accumulated by experience and keeping track and questioning every design
1556decision according to how the script has been enacted in different settings, including issues
1557that are often neglected such as time issues (the first uses of a platform necessarily require
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1558an additional activity that corresponds to understanding how it works, and appropriating it
1559to oneself). Manual transformations of models also allow taking advantage of the fact that,
1560differently from most settings within which computer-based systems are constructed, a
1561multidisciplinary team addressing the operationalization of a macro-script can act on both
1562sides of the software: what the user is supposed to do (the script itself) and the computer-
1563based system.
1564From a software engineering perspective, keeping coherence between the script and the
1565platform is an important issue that can be related to the “structural correspondence
1566principle” (Reinders et al. 1991) outlined by knowledge engineering researchers. This
1567principle states that an explicit link between the conceptual design models and the platform
1568characteristics (and vice versa) should be maintained as far as possible. In knowledge
1569engineering, respecting such a structural correspondence has been demonstrated to be an
1570important issue as (1) the multidisciplinary work that consists in working both on the
1571models and the computer-based system is facilitated and (2) the understanding and the
1572control of the computer-based system behavior is interpretable at an abstract level, using
1573the model notions (and not only at the computer-science implementation language),
1574which facilitates the tuning and the maintenance.

1575Technological-setting flexibility

1576We have emphasized that macro-script (and technological setting) perception and enactment
1577are subject to unpredictable issues. This makes flexibility an important concern. Requests
1578for flexibility may originate from the teachers and/or the students. For teachers, dealing
1579with unpredicted events may require changing decisions (or making late decisions)
1580according to the actual interaction pattern, or what can be perceived from some unattended
1581students’ general perception. For students, there may be a necessity to change some issues
1582(e.g., groups or scheduling) or adapt the technological setting to needs in context, according
1583to how the script is enacted and the underlying emergent issues, such as self-organization
1584issues. Introducing flexibility in the technological setting is a means to address the fact that
1585designing software to support activity is somewhat paradoxical as activity will emerge and
1586is not fully predictable. Here again, this goes in the direction of the conclusions of Jones et al.
1587(2006), that systems should be designed as “plastic forms that incline users to some uses in
1588particular but are available to be taken up in a variety of ways.”
1589Some requirements for script flexibility may be independent from any technological
1590dimension. Some others, however, may be related to the technological setting. An obvious
1591example is when the teacher or the students require adapting the accessible functionalities
1592according to the emergence of new needs. Technological issues may also however arise in
1593other cases, such as a modification of groups, which requires acting on the data-flow and
1594managing data integrity (Dillenbourg and Tchounikine 2007).
1595What comes with the notion of flexibility depends here again on the way the
1596operationalization process and technological settings are thought of, and in particular the
1597integration dimension. When the platform is thought of as providing self-service
1598functionalities, flexibility is related to how new functionalities/tools can be added: by
1599hand (e.g., by a teacher or a computer-scientist) or automatically (e.g., by updating the
1600specification model and then its deployment). When the platform is thought of as an engine
1601that runs an implementation model of the script (e.g., the approach proposed by Haake and
1602Pfister 2007), flexibility is introduced by the fact that this model can be changed at run
1603time, e.g., skipping a phase or modifying groups, and then prompting students accordingly.
1604When the platform is though of as a complex integration of interfaces, data flows and
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1605workflows, and some of these issues are to be modified run-time by teachers or students,
1606then flexibility requires making the platform tailorable.
1607In computer science, a system is said to be tailorable if it provides its users with some
1608means to modify itself in the context of its use as one of its functionalities (Malone et al.
16091992; Morch 1997). Tailorability is a means to combine the two objectives of (1) reifying the
1610script’s core mechanisms and (2) being flexible at run-time for both teachers and students.
1611From another perspective, findings in knowledge engineering have demonstrated that ad hoc
1612platforms have the apparent advantage of running the details of a model, but are in fact not as
1613reusable as might be imagined because, in most cases, there is always a slight detail (typically
1614related to the context of use) that differs from the prototype case implemented by the
1615platform. This leads either to changing the model to fit the platform (which, in the case of
1616scripts, would introduce a pedagogical bias), modifying the platform (which requires going
1617into the code), or projecting the model on the platform (which leads to losing the structural
1618principle). Tailorability is thus also a means to enhance platform reusability.
1619Introducing flexible/tailorable issues to CSCL platforms is an interesting research
1620direction, but raises different issues. First, from a computer science point of view,
1621tailorability is an issue. Platform generation and adaptation can be addressed by linking
1622predefined software components with some software glue according to the script design (i.e.,
1623before running the script) and then during script enactment. Considering tools, this is easy
1624when restraining the offer to a dedicated tool-repository, but is difficult if the objective is to
1625allow run-time use of any tool students would like to use as it raises the problem of
1626interoperating software components that have not been designed for this purpose. This is
1627manageable when adopting the minimalist approach of allowing access to tools within a basic
1628interface, but raises difficulties for script-specific interfaces or workflow issues. Moreover,
1629tailorability must be technically easy as teachers and students can not be expected to be
1630skilled programmers. This must thus be addressed with authoring tools (e.g., the Collage
1631approach) or specific interfaces (e.g., the platform that supports student self-organization in
1632RSC [Betbeder and Tchounikine 2003]). Second, tailorability for students is to be studied
1633with respect to the scope of flexibility defined by the intrinsic/extrinsic constraint notions,
1634and potential teacher regulation. Third, tailorability is, with respect to the students’ activity
1635as related to the script, another activity; there is therefore a risk of causing a breakdown in
1636the activity flow.

1637A high-level architecture of a model-based flexible script-engine

1638As a way to synthesize some of the major features we have discussed in this Section and to
1639present directions for future works, we propose in Fig. 3 an abstract (theoretical) general
1640picture of how a model-based flexible script-engine can be thought of. Our point here is not
1641to advocate a “big-brother” engine, but rather to outline that a model-based approach allows
1642considering different potentialities whose feasibility and educational interests are yet to be
1643studied.
1644Considering architectural design, a model-based script-engine must be based on an
1645explicit representation of the script models and their design rationale. It can correspond to
1646different types of software: hand-made script-specific platforms (e.g., a platform dedicated
1647to the Concept-Grid script); generic platforms customized by hand according to the script
1648(e.g., a particular instantiation of a CMS such as Zope/Plone); model-driven transformation
1649of a framework (e.g., the Bricolage approach); engines associated with a more-or-less
1650specific language (e.g., CopperCore and LD, works reported in Miao et al. 2005 or Haake
1651and Pfister 2007).
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1652Considering capacities to run and manage the script, these abstract models must be
1653associated with an operational semantics. This dimension is a key to different issues that arose
1654in this article that may (according to the setting) be important matters of concern, such as:

1655– Orchestrate activities and manage the workflow, e.g., provide access to data or tools
1656according to the script structural and implementation models. This is addressed by
1657works such as Miao et al. (2005) and Haake and Pfister (2007), or in a more limited
1658way when using LD.
1659– Adapt the script dynamics presentation (and, possibly, the script and platform
1660presentations) in real time in order to maintain the coherence between the represented
1661script and the actual interaction pattern.
1662– Manage the platform to comply with some students’ or teachers’ requests for flexibility
1663whilst remaining coherent with the script’s intrinsic constraints.
1664– Manage automatically some regulation issues and/or assist the teacher in his regulation
1665(e.g., informing him of any unexpected event), here again with respect to the script’s
1666intrinsic and extrinsic constraints.

1667These issues fall into classifications of “monitoring of the learning flow,” “dynamic
1668configuration of the learning environment” and “model-based scaffolding” support
1669functions of Miao et al.
1670Another important dimension of such architecture should be to support accumulation of
1671knowledge by, for instance, supporting data analysis and recurrent-patterns identification,
1672which will help in iteratively refining scripts, and in progressing in the understanding of
1673script enactment.
1674Considering feasibility, the potential power of such a script-engine is correlated to the
1675power of expression and precision of the used models (Miao et al. 2005). From the point of
1676view of modeling, the issue is to elaborate languages that allow the teacher and the system
1677to reason about the script issues, namely its design rationale, thus addressing computational
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Fig. 3 A model-based flexible script-engine approach
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1678issues through pedagogic notions (languages for teachers and languages for script-engines
1679may be different but interoperable). From the point of view of the script-engine’s potential,
1680a first issue is the interpretation of the data and logs (computational events), a second issue
1681is, if automated regulation is targeted, that of modeling-regulation decisions. Considering
1682interpretation, some issues are intractable, for instance, regulations that require Natural-
1683Language understanding can not be automated. In certain cases, artificially structured
1684communication (i.e., using predefined sentences or sentence-openers) or computational-
1685event analysis (e.g., tracking access to data or use of a function) can allow some kind of
1686automated regulations and/or support teachers in their understanding of the students’
1687actions. Some proposals already exist, such as UTL (Iksal and Choquet 2005), a dedicated
1688language that aims at analyzing logs with respect to IMS-LD models. Referring to software
1689engineering, things should probably be addressed by considering script classes/patterns and
1690corresponding architectures, rather than “in general.”

1691Conclusions

1692In this article we have proposed an analysis of some core issues that must be taken into
1693account when operationalizing macro-scripts: a conceptualization model, an analysis of
1694current technological approaches with respect to this model, and finally research directions
1695for the design and implementation of technological settings that present the properties
1696identified in our analysis. The presented model is proposed as an intermediation object for
1697multidisciplinary work that can help in making clearer and elaborating knowledge of
1698different issues, in particular: modeling of CSCL macro-scripts; understanding of the links
1699scripts/technological settings (for both script and technological setting designers); design of
1700technological settings; understanding of how technological settings can be analyzed in
1701order to avoid being incoherent with the script and/or can be used to influence behavior in a
1702way that is coherent with the script; studying the flexibility issues of scripts; understanding
1703of script enactment; accumulating guidelines and knowledge that can be useful in
1704orientating the selection of adequate technological settings, defining precise specifications
1705for new technological settings, limiting the risks of technology-oriented choices that are in
1706contradiction with pedagogic issues, or identifying what parameters can be tuned by the
1707teachers and the students and what is not modifiable.
1708A conceptualization such as SPAIRD puts a set of issues on the worktable. An analogy
1709can be made to software engineering approaches to development such as the object-oriented
1710Unified Modeling Language (UML 2006). First, different models denoting different
1711dimensions are proposed and (if nothing else) designers then consider a set of issues just
1712because of the fact these issues are outlined. Second, modeling languages are elaborated (or,
1713as in the case of UML, already-existing modeling languages are reinterpreted in the context;
1714at this level, we have emphasized that different existing languages could be linked with the
1715view proposed by SPAIRD). Then, time and experience help in refining the overall
1716conceptualization and the modeling languages, and in elaborating guidelines and
1717knowledge. Finally, this can lead to the crystallization of an explicit process/methodology,
1718similar to the software engineering “unified process” that is currently being elaborated at
1719the top of UML. Within this perspective, SPAIRD is a contribution within the first phase.
1720Questioning SPAIRD conceptualization both from a theoretical point of view and from
1721practice, building on it or proposing alternatives will help in (1) developing intermediation
1722conceptual tools for multidisciplinary research, (2) providing conceptual bases for design,
1723(3) elaborating accumulated knowledge that can be used by designers to question their
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1724design and/or orientate decisions and possibly (4) identifying/building/reshaping modeling
1725and operationalization languages within an articulated view.
1726From the perspective of accumulating knowledge, design-rationale approaches can be
1727used in order to systematically identify, make explicit and keep track of design decisions
1728(see Moran and Carroll (1996) for a reference book on design-rational approaches). For
1729example, the QOC formalism (Question–Options–Criteria) helps in guiding and document-
1730ing a decision process by proposing a list of questions to be answered, together with
1731possible options and selection criteria. Within this perspective, works such as SPAIRD or
1732the conceptual model of scripts presented in Kobbe et al. (2007) help in making explicit and
1733formulating questions related to script operationalization (e.g., “What are the options with
1734respect to group formation, and the pertinent selection criteria?”). Premises for such a
1735rationale approach to knowledge accumulation can be found in different research that
1736intends to identify guidelines. For example, Strijbos et al. (2004) identified six steps for
1737designing computer-supported group-based learning (defining the learning objective, the
1738expected interaction, the task, the structure, the group size and how computer support can
1739be best used) and, for every step, a set of key issues to be questioned. Dillenbourg and
1740Jermann (2007) suggest building script repositories containing abstract models of scripts,
1741structured and indexed according to different issues such as pedagogic principles, script
1742families or structural or implementation characteristics. Other works attempt to accumulate
1743and share knowledge as patterns, providing teachers and designers with comprehensive and
1744structured design ideas, both ready to use (and/or adapt) and coupled with research
1745evidence (Goodyear 2004; DiGiano et al. 2002; Hernandez Leo et al. 2004). Such a
1746perspective can be addressed by both theoretical means and knowledge accumulation
1747means. Research in knowledge engineering such as the KADS methodology (Wielinga et al.
17481992) have powerfully demonstrated how libraries of generic models (in KADS, problem-
1749solving models) could be constructed by mixing reverse engineering (i.e., analyzing a
1750posteriori existing systems), abstraction and generalization processes, and how such
1751libraries are powerful help for system designers. Such works are not only useful for
1752disseminating scripts and making them accessible to practitioners, they also raise interesting
1753research issues with respect to the levels of abstraction and genericity that should be used,
1754what can be addressed at the different levels (e.g., generic level, script-family level, script
1755abstract level or specific-setting level), and how technological settings can be associated
1756with such abstract models.
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