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12Abstract This paper describes a promising methodology for studying co-located groups:
13mobile eye-trackers. We provide a comprehensive description of our data collection and
14analysis processes so that other researchers can take advantage of this cutting-edge technology.
15Data were collected in a controlled experiment where 27 student dyads (N = 54) interacted
16with a Tangible User Interface. They first had to define some design principles for optimizing a
17warehouse layout by analyzing a set of Contrasting Cases, and build a small-scale layout based
18on those principles. The contributions of this paper are that: 1) we replicated prior research
19showing that levels of Joint Visual Attention (JVA) are correlated with collaboration quality
20across all groups; 2) we then qualitatively analyzed two dyads with high levels of JVA and
21show that it can hide a free-rider effect (Salomon and Globerson 1989); 3) in conducting this
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22analysis, we additionally developed a new visualization (augmented cross-recurrence graphs)
23that allows researchers to distinguish between high JVA groups that have balanced and
24unbalanced levels of participations; 4) finally, we generalized this effect to the entire sample
25and found a significant negative correlation between dyads’ learning gains and unbalanced
26levels of participation (as computed from the eye-tracking data). We conclude by discussing
27implications for automatically analyzing students’ interactions using dual eye-trackers.

28Keywords Joint visual attention . Collaborative learning . Dual eye-tracking
29

30Introduction

31Joint visual attention is a prerequisite for virtually all social interactions across cultures and
32ages. This is especially true for tasks that require collaborators to build a shared problem space.
33This process is sometimes referred to as grounding from a psycho-linguistic perspective (Clark Q1

34and Wilkes-Gibbs 1986). Building a common ground ensures that collaborators are on the
35same page and share a common definition of the terms used. While grounding is useful to
36explain short conversational events, CSCL researchers suggest going beyond this concept for
37educational contexts and to focus on shared meaning making instead (Stahl Q22007). Meaning
38making is associated with “the increased cognitive-interactional effort involved in the transi-
39tion from learning to understand each other to learning to understand the meanings of the
40semiotic tools that constitute the mediators of interpersonal interaction” (Baker Q3et al. 1999,
41p.31). It gradually leads to the construction of new meanings and results in conceptual change.
42From this perspective, markers of collaborative learning are captured through iterative cycles
43of interactions that converge toward a shared understanding of the concepts taught.
44Researchers in CSCL generally agree that Joint Visual Attention (JVA) plays a central role
45in supporting students’ conceptual convergence (Roschelle 1992). It is worth noting that joint
46attention is associated with many overlapping concepts in the learning sciences and CSCL -
47“shared cognition,” “intersubjectivity,” “grounding processes in conversation,” “joint problem-
48solving,” and “distributed cognition” (Barron and Roschelle 2009).
49Traditionally, JVA has been studied through qualitative case studies. But we now have
50the means to go beyond case-by-case evidence of the importance of JVA for collaborative
51learning. One way of rigorously studying and quantifying this construct is to leverage new
52sensing technologies. Eye-trackers are becoming increasingly easier to use and more
53affordable and they allow researchers to collect large datasets on students’ visual process-
54es. In this paper, we show how they can be leveraged to better understand collaborative
55processes.
56We report the following contributions to the study of JVA: first, we describe a methodology
57for synchronizing mobile eye-trackers to study co-located interactions. Second, we replicate
58previous results showing that high levels of JVA are significantly correlated with the quality of
59students’ interactions. Third, we qualitatively analyze two dyads with high levels of JVA and
60high / low learning gains to understand why sometimes joint visual attention does not predict
61learning. Fourth, we present new ways of visualizing JVA with augmented cross-recurrence
62graphs to better understand those differences. Finally, we generalize those results to the entire
63sample and describe metrics that capture group members’ tendency to initiate or respond to
64offers of JVA. We conclude by mentioning limitations of our approach and promising future
65work in the study of collaborative learning using mobile eye-trackers.
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66Literature review

67Dual eye-tracking and joint visual attention in the learning sciences

68Joint Visual Attention (JVA) is a central construct for any learning scientist interested in
69collaborative learning. It is “the tendency for social partners to focus on a common reference
70and to monitor one another’s attention to an outside entity, such as an object, person, or event”
71(Tomasello 1995, pp. 86–87). Without the ability to establish joint attention, groups are
72unlikely to establish a common ground, take the perspective of their peers, build on their
73ideas, express some empathy or solve a problem together. Autistic children, for example, are
74known to have difficulties in coordinating their attention with their caregivers (Mundy et al.
751990), which in turn is associated with major social disabilities.
76Previous studies in CSCL (Computer-Supported Collaborative Learning) and LS (Learning
77Sciences) have highlighted the importance of joint attention in small groups of students.
78Barron (2000), for instance, carefully analyzed how groups of students who failed to achieve
79joint attention were more likely to ignore correct proposals and not perform as well as similar
80groups. More generally, there is a large body of evidence showing that JVA is a central
81mechanism for effective collaboration (e.g., the process of building a shared understanding has
82been extensively studied by psycholinguists under the name of grounding; Clark 1985). In the
83Learning Sciences, some have called it partner modelling (Dillenbourg et al. 2016). In
84education, building a shared understanding is really a mean to an end: that is, how does
85building a common ground lead to learning? Learning scientists suggest that it is actually the
86cognitive effort of building a shared understanding that produces learning, not merely the fact
87of sharing a common ground (Schwartz 1995). Linguists, psychologists and learning scientists
88all agree that Joint visual attention plays a central role in this process.
89Over the last two decades, researchers have started to leverage eye-trackers to capture JVA
90in remote collaborations. Richardson and Dale (2005), for example, found that the degree of
91gaze recurrence between individual speaker–listener dyads (i.e., the proportion of times that
92their gazes are aligned) was correlated with the listeners’ accuracy on comprehension ques-
93tions. Jermann et al. (2011) conducted a similar analysis with a dual eye-tracking setup. They
94used cross-recurrence graphs (described below in Fig. 1) to separate “good” and “bad”
95collaborative learning groups. They found that productive groups exhibited a specific pattern
96(shown in Fig. 1’s middle graphs), and that less productive groups produced a fundamentally
97different collaborative footprint (right graph of Fig. 1).

Fig. 1. A cross-recurrence graph reproduced from Jermann et al. (2011). On the left, a schematic graph; in the
middle picture, a cross- graph from a productive group; on the right side, from a less productive groupQ4
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98As a side note, it is worth mentioning that researchers have also started to think about ways
99to use-eye-trackers to actively support visual coordination in pairs of students. The precursor to
100this approach is a study by Schneider and Pea (2013), where they used two remote eye-trackers
101to provide students with a gaze awareness tool. They showed that dyads who could see the
102gaze of their partner in real time outperformed their peers in terms of their learning gains and
103quality of collaboration. This intervention was beneficial to students because they could
104monitor the visual activity of their partner in real time, anticipate their contribution, and
105more easily disambiguate vague utterances. In the same vein, Mason et al. (2015) showed
106that 7th graders who could see a teacher’s gaze when reading an illustrated text learn
107significantly more than students who could not. D’Angelo Q5and Begel (2017) designed a gaze
108awareness tool for programmers which shows the snippet of code their partners are looking at.
109They found that their intervention promoted higher levels of joint visual attention, increased
110the proportion of implicit to explicit references, and that participants were faster and more
111successful at responding to them. Finally, Schlösser et al. (2015) found that remote collabo-
112ration during a puzzle task could be improved with a gaze awareness tool compared to no gaze
113support. They also compared a “gaze cursor” (showing where the partner was looking) and a
114“gaze awareness” condition (highlighting which puzzle piece was currently looked at) and
115found no difference between them. While this line of work is not directly relevant for the scope
116of this paper, it provides examples showing that we can support collaborative learning through
117dual eye-tracking.
118There have been very few attempts at using mobile eye-trackers in formal and informal
119learning environments. Gergle and Clark (2011) pioneered the use of dual eye-tracking for in-
120situ interactions: they used large fiducial markers in the environment to capture JVA and
121compared participants who were either sitting or standing. They found significant differences
122in terms of terms of their linguistic and visual coordination. Papavlasopoulou et al. (2017)
123studied “kids” (age 8–12) and “teens” (age 13–17) with mobile eye-trackers and found that
124kids focused more on surface features (e.g., the appearance of the characters), while teens
125tended to show more hypothesis-testing behavior when coding. They did not look at JVA
126specifically, but they measured gaze similarity – for example if pairs of participants had similar
127gaze behaviors (e.g., spatial dispersion). They found that teenagers exhibited higher gaze
128similarity than kids. Finally, Prieto et al. (2014) are working on leveraging mobile eye-tracking
129to capture teachers’ cognitive load using a variety of measures (e.g., pupil size).
130In summary, remote and mobile eye-trackers can provide us with new insights into
131students’ learning processes, and dual eye-tracking setup can help us gain a better understand-
132ing of collaborative processes – for example by quantifying joint visual attention. Additionally,
133some novel work also provides evidence that eye-tracking can be used to design interventions
134to support communication in remote collaborations.
135In the next section, we review in greater detail how researchers have been making sense of
136dual eye-tracking data, more specifically by generating cross-recurrence graphs. We describe
137them in detail here, because this paper builds upon (and extends) this methodology when
138analyzing dual eye-tracking data.

139Dual eye-tracking settings and cross-recurrence graphs

140Previous work done by Jermann and his colleagues (2011) used cross-recurrence graphs to
141make sense of dual eye-tracking datasets. A cross recurrence graph (shown on Fig. 1) is a
142visual representation of a dyad’s visual coordination: the x-axis represents time for the first
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143participant, the y-axis represents time for the second participant, and black pixels show
144moments of joint attention (for a given time slice and distance between two gazes). Thus, a
145black diagonal signifies that the dyad was continuously looking at the same area of interest
146(e.g., the middle graph in Fig. 1); black squares outside the diagonal mean that both
147participants looked at the same location, but not at the same time; the absence of a dark
148diagonal means an absence of joint visual attention (e.g., the right graph on Fig. 1). In
149other words, good quality interaction exhibits higher recurrence rates of JVA compared to
150low quality interaction. This difference can be detected visually using cross-recurrence
151graphs.
152We use a similar methodology in this paper, with three new contributions: first, the data
153comes from a study that looked at co-located interactions. We captured students’ gazes using
154two mobile eye-trackers, whereas prior work has almost exclusively looked at remote inter-
155actions (i.e., where students were looking at two different computer screens). This develop-
156ment is a significant improvement in terms of ecological validity, because so much of
157collaborative learning is among co-located individuals. Second, we augmented cross-
158recurrence graphs with speech data and spatial information to uncover students’ visual
159attention when working on a problem-solving task. This provided us with compelling visual-
160izations that guided our qualitative analysis. Third, we contrasted two groups that each
161exhibited high levels of joint visual attention (in contrast with comparing a productive versus
162a non-productive group, as Jermann and his colleague did). Our goal is to illustrate the
163multitude of ways that students use to successfully establish joint visual attention. We found
164that dual eye-tracking datasets can uncover particular types of collaboration dynamics. Finally,
165we extended qualitative observations to the entire sample and found that dyads’ extent of
166participation imbalance (computed from moments of joint visual attention) was negatively
167correlated with learning gains.
168In the section below, we describe our study and the data it generated. It should be noted that
169the main contribution of this paper is not the experiment itself (which was published elsewhere
170– see Schneider et al. 2016). The main contributions of this paper are the analyses of the eye-
171tracking data and the kinds of insights which were then generated. We describe the original
172study in more detail below.

173General description of the experiment

174The goal of the study was to conduct an empirical evaluation of a Tangible User
175Interface (TUI) designed for students following a vocational training in logistics. The
176system used in this study, the TinkerLamp (Fig. 4) features small-scale shelves that
177students can manipulate to design a warehouse layout. A camera detects their location
178using fiducial markers and a projector enhances the physical layout with an augmented
179reality layer. The original study compared the affordances of 2D, abstract-looking
180interfaces (Fig. 3, left side) with 3D, realistic-looking interfaces (Fig. 3, right side) and
181compared its effect across three levels of expertise (1st year, 2nd year and 3rd year
182students). See the following paper for more information (Schneider et al. 2016). In this
183paper, we will not focus on the effect of the two experimental conditions and students’
184expertise. Instead, we aggregate the data across all groups and search for general markers
185of productive interactions regardless of the interface that students interacted with (2D or
1863D) or their prior knowledge.

Intern. J. Comput.-Support. Collab. Learn
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187Method

188Participants

18954 apprentices in logistics participated in the study (28 in the “3D” condition, mean age =
19019.07, SD = 2.76; 26 in the “2D” condition, mean age = 17.96, SD = 1.56). Due to the
191vocational domain, few women participated (4 in the “3D” condition, 3 in the “2D” condition).
192All participants were following a vocational training in logistics in Switzerland: 16 first-year,
19316 s-year, and 22 third-year (N = 54).

194Procedure

195The general description of the experiment is shown on Fig. 2 above. The activity lasted an hour
196and the goal for students was to uncover good design principles for organizing warehouses.
197The core of this reflection involved understanding the trade-off between the amount of
198merchandise that can be stored in a warehouse and how quickly one can bring an item to a
199loading dock (i.e., a lot of shelves make it difficult to efficiently load/unload items, while few
200shelves limit the size of available stock). To help students understand this relationship, we
201followed the Preparing for Future Learning framework (Bransford and Schwartz 1999). We
202designed a set of contrasting cases (Fig. 3, first row) and asked students to analyze three
203layouts based on the following criteria: in which warehouse they would prefer to work on a
204daily basis (prompt 1); which warehouse maximized space (prompt 2); and finally, which
205warehouse minimized the distance from each shelf to the docks (prompt 3). At the end, the
206experimenter revealed the numbers for those two metrics (referred to as “reveal” on Fig. 2).
207The contrasting cases were set up to highlight good design principles (e.g., orienting the
208shelves toward the docks makes them more accessible, placing them back to back so that only
209one side is accessible frees up space, and so on). Students were asked to use those principles in
210the next activity (Fig. 2, second row), where they built two warehouses: one where they had to
211put as many shelves as possible in a given layout, and a second one where they had to

Pre-test Memory
Task

Post-test

~ 10 min~ 10 min~ 10 min~ 5 min

total: < 60 min

~ 10 min

Contrasting 
Cases

Construction 
Task

Calibration
(eye-trackers)

~ 5min

Reveal

~ 5 min

Tags for synchronizing
the eye-trackers:

Memorize Recall Analyze
(start)

Analyze
(end)

Optimize
space

Optimize
distance

End of
study

Fig. 2 The experimental design of the study. See the “procedure” section below for more details. The bottom
rows show the tags presented to participants to synchronize the different data sources (i.e. the eye-trackers and the
Tangible User Interface). The construction task had two subtasks: participant had to first optimize the space
available in a warehouse, and then minimize the average distance between the shelves and the docks

Schneider B. et al.
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212minimize the average distance to the docks given a certain number of shelves. Before and after
213those two activities, we gave students a pre and post-test where we asked them to modify the
214layout of several warehouses to optimize them. We have two main dependent variables: how
215well they designed the two warehouses, and how well they answered the learning test. During
216those two activities, students wore two mobile eye-trackers (SMI Eye-Tracking Glasses with
217binocular pupil tracking at 30 Hz) and we used the scene cameras (1280 × 960 pixels) to record
218videos for post-processing.

219Material

220Students interacted with a TUI called the TinkerLamp (Fig. 4). This system combines a camera
221(to detect the location of the fiducial markers) and a projector (to display the augmented reality
222layer). The system allows students to build warehouse layouts and receive feedback in real
223time by combining a physical and digital representation. This system has been used in several
224schools in Switzerland and has been co-designed with teachers during several iterations of a
225Design-Based Research (DBR) program. For an exhaustive description of this TUI, please see
226Zufferey et al. (2009).
227The stimuli for each task are described in Fig. 3. The learning tests had 4 questions: we
228asked students to 1) estimate the minimal distance between two shelves for a forklift to load up
229a pallet; 2) optimize the average distance between the docks and shelves of a given warehouse
230by correctly positioning two docks (arrivals and shipment); 3) optimize the average distance
231between the docks and shelves, except that the two docks were already positioned and

noitidnoCD3noitidnoCD2
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Fig. 3 The main experimental tasks: the 2nd row the contrasting cases students had to analyze; the 2rd row
shows the Tangible Interface for the construction task. The “red”, “green”, “blue” labels are used to color-code
additional analyses below (e.g., in the cross-recurrence graphs in Fig. 8)
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232participants had to move two shelves to minimize the distance to the docks; 4) select good
233design principles for both maximizing space and minimizing the average distance to the docks
234from a multiple-answer question. The pre and post-test were similar, except that we changed
235the configurations of the layouts for questions 2 and 3. Question 1 and 4 were identical on the
236pre and post-test.

237Coding

238For the memory task, we counted the number of shelves and docks in the correct location as a
239retention score. For the construction task, the TinkerLamp provided us with two measures of
240performance: the number of accessible pallets and the average distance to the docks.
241Additionally, students’ answers to the learning tests were evaluated as follows: for the 1st
242question (estimating the minimal distance between two shelves to load up a pallet), participants
243received 1, 2, 3 or 4 points depending on the accuracy of their measurement. Answers below
244the minimal distance earned 0 points. For the 2nd and 3rd question, an optimal arrangement
245was worth 4 points. Points were deducted based on their (dis)similarity with the best answer.
246Question four and five (multiple-answer question) were evaluated as right or wrong. Perfectly
247answering the test was worth 20 points. Learning gains were computed by subtracting the
248score of the pre-test from the score of the post-test.

249Data pre-processing

250While the previous section describes outcome measures, we describe the process data gener-
251ated in this study below. Datasets came from two sources: the TUI and the mobile eye-trackers.
252We illustrate what the log files look like in both cases.

253Data from the mobile eye-tracker

254Participants wore non-invasive mobile eye-trackers during the three experimental tasks. The
255models used were 2 SMI Eye-Tracking Glasses (ETG) with binocular pupil tracking at 30 Hz.
256Those units are lightweight (75 g.) and can easily be used for hour-long experimental sessions.
257We also used the scene camera (1280 × 960 pixels) to do fiducial tracking and synchronize the
258two devices. The mobile eye-trackers generate log files to accompany the movies captured

Fig. 4 The TinkerLamp. The left side shows the physical apparatus, that combines a projector and a camera. The
middle image provides an example of the augmented reality layer, which shows the stocks left and the forklifts
moving back and forth between the docks and the shelves. The picture on the right shows three apprentices
interacting with the TinkerLamp during a classroom activity
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259from the scene camera. The log files contain, for each frame of the video, the x and y location
260(in pixels) of the participant’s gaze. Scientific packages for eye-tracking systems also provide
261researchers with a wealth of information about the subject’s gaze: for instance, the pupil’s
262dilation (which can be, in some circumstances, used as a proxy for cognitive load), whether the
263current data point is a fixation, a saccade or blink, and so on. We provide an example below
264(Table 1):
265Where POR stands for Point of Regard, EPOS for Eye Position, GVEC for gaze vector, L
266for left, R for right, B for Binocular. In practice, researchers primarily use the timestamp, the x-
267y binocular POR, and the Event info (i.e., whether the data point is a fixation, saccade or
268blink). The eye position and gaze vector can be used for reconstructing the scene in three
269dimensions.
270By processing the video from the scene camera with a fiducial tracking engine (Chilitags 2;
271Bonnard et al. 2016), we were able to generate the log data that described, for each frame of
272the video, the location of the fiducial markers on that particular frame. For example, one line of
273this log file would look like this:

27420,881,289.29,409.847,831.83,378,852,392,812,438,814,428,852
27521,881,291.501,407.195,831.671,378,848,391,815,437,815,425,850
27621,915,354.014,1054.95,544.127,1027,536,1065.28,531.986,1084.18,552.626,1044,557

277Those numbers correspond to the following fields: frame number, marker Id, angle,
278center.x, center.y, corners[0].x, corners[0].y, corners[1].x, corners[1].y, corners[2].x,
279corners[2].y, corners[3].x, corners[3].y. In the example above, the 20th frame of the movie
280file had one fiducial marker (#881), and the 21st frame had two (#881 and #915). The angle is
281in degrees and the location of the center and corners of the fiducial marker are in pixels.

282Data from the tangible user Interface

283The TUI generated log files accompanied by screenshots captured every second from a top-
284down perspective. The log files contain the x and y location of the fiducial markers detected on
285the frames of the video (Table 2):

286Challenges

287The challenges of coordinating these data sources can be summarized by two main issues:
288aligning the logs temporally (i.e., synchronizing each dataset to make sure that events are
289happening at the same time) and aligning the data spatially (i.e., transposing the location of
290each event onto a common space, so that we can tell if they intersect or not). We describe our

t1:1 Table 1 Example of a line from the eye-tracking log file

t1:2 Header Time,Type,Trial,B POR X [px],B POR Y [px],L POR X [px],L POR Y [px],R POR X
[px],R POR Y [px],B Object Hit,L EPOS X,L EPOS Y,L EPOS Z,R EPOS X,R EPOS Y,R
EPOS Z,L GVEC X,L GVEC Y,L GVEC Z,R GVEC X,R GVEC Y,R GVEC Z,Frame,Aux1,B
Event Info

t1:3 Data 20,916,024,180,SMP,1,626.41,570.39,556.52,444.18,697.15,457.43,-
,30.62,0.02,-24.25,-28.19,0.09,-24.81,0.00,-0.22,0.98,0.02,-
0.23,0.97,00:00:00:00,Blink

Intern. J. Comput.-Support. Collab. Learn

JrnlID 11412_ArtID 9281_Proof# 1 - 10/07/2018



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

291strategies for solving those two issues below. Figure 5 provides a visual summary of the
292datasets and challenges.

293Temporal alignment

294Making sure that the log files are temporally aligned is a challenge when dealing with multiple
295devices. We solved this problem by presenting fiducial markers with a specific ID at key
296moments (as shown on Fig. 2). We briefly presented them on the table to both participants and
297within the field of view of the TUI’s camera. By post-processing the video of the eye-trackers’
298scene cameras and the snapshots of the TUI, we were able to identify when those markers were
299presented. This technique could be thought of a visual “hand clap” commonly used to
300synchronize movies – with the advantage that participants were not distracted or discomforted

t2:1 Table 2 Example of a line from the TUI log file

t2:2 Header date, timestamp, type, event, fiducial ID, top left corner, top right corner
t2:3 Data 17–13-2,1,378,480,382,386,tag,added,chili,14,411.764,679.855,507.475,677.629

Fig. 5 Visual summary of the challenges involved with analyzing data from mobile eye-trackers
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301by a loud sound. All of the markers used for synchronization purposes were successfully
302detected by the fiducial tracking engine (Bonnard et al. 2016).

303Spatial alignment

304The strategy that we used to spatially align the data from each data source was to first define a
305ground truth for each task. The ground truth is a top-down representation of the scene. For the
306analysis task, it was straightforward to generate: we simply took a picture of the warehouses’
307layouts students had to analyze and used the fiducial engine to detect the location of each
308marker on that picture. For the construction task, we faced an additional challenge: the ground
309truth was changing every second. We thus needed to re-generate a new ground truth with the
310location of the fiducial markers every second. Figure 6 shows examples of ground truths for
311the analysis and construction tasks.
312By using the location of the fiducial markers detected from the two mobile eye-trackers, we
313were able to remap participants’ gaze onto the ground truths. This mathematical operation is
314called a homography and is widely used in computer vision. More concretely, having a
315common set of points (i.e., the location of the fiducial markers) in two different images allows
316the researcher to infer the location of another set of points (i.e., the gaze points) which location
317are only known on one perspective (i.e., the video frames of the eye-tracker’s scene camera).
318Figure 7 summarizes those operations.

319Computing a metric for joint visual attention

320After solving the two challenges above, we needed to consider two additional parameters
321when computing joint visual attention from eye-tracking data. First, participants’ visual
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Fig. 6 Ground truths used for the analysis and the construction tasks
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322attention is rarely perfectly synchronized. In an early study, Richardson and Dale (2005)
323looked at the coupling between a speaker’s and a listener’s eye movements and found that a
324listener’s eye movement most closely matched a speaker’s gaze with a delay of 2 s. For this
325reason, we consider a lag of ± 2 s when computing our JVA metric. A second parameter for
326consideration is the threshold for the distance between two gazes. Jermann et al. (2011) used a
327radius of 70 pixels with participants looking at a computer screen, but the size of the ellipse
328depends on the distance of the participants’ eyes to the plane they are looking at. We build on
329those results to compute our own metric of joint attention: we looked at each gaze point from
330the first participant and tried to find a corresponding point from the second participant using a
331time window of ± 2 s in a radius of 50 pixels (which roughly corresponds to the width of a
332shelf). In a different publication, we experimented with different time windows and radiuses
333and found consistent results with different values for those parameters (Schneider et al. 2016).
334Finally, since the number of data points varied widely between participants, we divided our
335measure for joint attention by the total number of gaze points of each participant to obtain a
336percentage of joint attention over the entire activity. This prevented us from inflating the joint
337attention score of participants who had more data points captured. Finally, we discarded blinks
338and saccades and only focused on fixations (i.e., the pause of the eye movement on a specific
339area of the visual field). The eye-tracking software (SMI BeGaze) automatically detected these
340three events (i.e., fixations, saccades, blinks).

341Results

342Capturing JVA with mobile eye-trackers

343We summarize here the main results pertaining to our metric of JVA, and how it relates to
344outcome measures (task performance, learning gains, quality of collaboration). Those results
345are more precisely described in a different publication (Schneider et al. 2016).
346The JVA metric was predictive of students’ performance on the construction tasks: r(24) =
3470.431, p = 0.028, which suggests that joint attention was associated with a better understanding

Fig. 7 Examples of a homography for each task (the analysis task is shown on the left; the construction task is
shown on the right). The red lines show the common set of points across perspectives (i.e., the shelves) used for
the homography and the blue / green dots show the inferred location of the gaze points onto the ground truth
(bottom row)
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348of design principles for optimizing warehouse layouts. When computing correlations for 1st,
3492nd and 3rd year students, we found different effects. Regarding 1st and 2nd year students
350(grouped together), joint attention was correlated with students’ performance during the first
351construction task (optimizing space): r(13) = 0.59, p = 0.021 and learning gains r(16) = 0.423,
352p = 0.051. For 3rd year students, joint attention was correlated with students’ performance at
353the second construction task (optimizing distance from the shelves to the docks): r(9) = 0.618,
354p = 0.043 and not with learning gains r(9) = 0.101, p = 0.768. Those results show different
355dynamics of collaboration as students become experts and suggest differentiated effects of a
3563D TUI on different samples of students.
357Finally, we rated students’ quality of collaboration using Meier et al. (2007) rating scheme.
358A researcher coded the entire collaborative episode using a five-point scale on the following
359eight dimensions: sustaining mutual understanding, dialogue management, information
360pooling, reaching consensus, task division, task management, technical coordination, recipro-
361cal interaction, individual task orientation. Additionally, an overall score was computed by
362averaging ratings across all these dimensions. A second judge double-coded ~20% of the
363videos (6 groups). Inter-reliability index using Krippendorff’s alpha was 0.83 (an alpha higher
364than 0.8 is considered as a reliable agreement between judges; Hayes and Krippendorff 2007).
365We found the percentage of joint attention was significantly correlated with students’ overall
366quality of collaboration: r(24) = 0.432, p = 0.027. More specifically, joint attention was sig-
367nificantly correlated with students’ tendency to manage group dialogue r(24) = 0.427, p = 0.03,
368reach a consensus r(24) = 0.517, p = 0.007 and equally divide work between members of the
369group r(24) = 0.424, p = 0.031. For comparison, Schneider and Pea (2013) performed the same
370analyses in a remote collaboration and found a significant correlation between joint attention
371and collaboration (more specifically, at sustaining mutual understanding, reaching a consensus,
372managing time and pooling information). This finding replicates previous results showing that
373joint attention can act as a proxy for students’ quality of interaction and seems to reflect their
374ability to reach consensus.

375Comparing two dyads with high levels of JVA

376In an earlier publication, Jermann et al. (2011) contrasted two pairs who participated in a dual
377eye-tracking study. Their goal was to show how good groups differed from less productive
378groups in terms of their visual coordination. In this section, we decided to focus on two pairs
379that achieved high levels of JVA in our study. We want to better understand the multitude of
380ways that students can synchronize their attention. We also chose two groups that performed
381above average on the problem-solving tasks—but not on the learning test. Table 3 summarizes
382key information about the two dyads:
383After running the study, we found that the post-test was harder than the pre-test. This
384explains why some learning gains are negative (e.g., group 20 in Table 3).

t3:1 Table 3 Data of group 13 and 20

t3:2 Task 1 Task 2 Learning gains JVA Speech

t3:3 Group 13 13 shelves 7.47 m 7.5 points 24% 409 s
t3:4 Group 20 18 shelves 7.39 m −0.5 points 29% 540 s
t3:5 All

groups
M = 13.5
SD= 2.9

M= 7.6
SD= 1.9

M= 1.3
SD= 3.2

M = 15.7
SD= 8.0

M= 405.7
SD= 245.7
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385Augmenting cross-recurrence graphs

386We used the information from the eye-tracking logs and the data from Table 3 to build a new
387visualization: an augmented cross-recurrence graph (Fig. 8). As a reminder, a cross-recurrence
388graph displays moments of joint visual attention over the entire activity. The x-axis represents
389time for the first participant and the y-axis represent time for the second participant. In our
390case, it should be noted that the origin (0,0) is on the top left corner – as opposed to the bottom
391left corner used in Fig. 1. Thus, a dark diagonal indicates synchronized moments of JVA. Dark
392dots outside the diagonal show when participants revisited areas of interest at a different point
393in time (e.g., in Fig. 8, a black dot on the top right corner means that the first participants

Fig. 8 Cross recurrence graphs of two high-performing groups (13 and 20). The top figures show standard cross-
recurrence graphs. The middle figures show colored graphs (red pixel = JVA on the 1st warehouse; green = JVA
on the 2nd one; blue = JVA on the 3rd one). The bottom figures show speech data for each dyad
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394looked at a particular location at the end of activity and the second participant looked at the
395same area at the beginning of the activity).
396We extracted speech information from the audio data to collect the number of seconds that
397each student spoke. JVA and speech data are displayed in Fig. 8 for groups 13 and 20: on the
398top, we first show the traditional black and white cross-recurrence graphs used in prior work
399(e.g., Jermann et al. 2011); on the bottom, we show our cross-recurrence graphs augmented
400with spatial information (i.e., which warehouse the two students were jointly looking at) and
401speech data (who spoke when during the analysis task).
402The graphs of Fig. 8 provide us with several interesting bits of information about groups 13 and
40320. First, we can notice that the traditional cross-recurrence graphs are ideal for identifying
404moments of joint visual attention (black squares along the diagonal). Based on those graphs,
405one would predict that group 20 has a better visual coordination than group 13: the diagonal is
406darker, with more well-defined squares, meaning that this group jointly looked at the same area on
407the tablemore often and had longer moments of joint attention. Prior work suggests that an unfilled
408cross recurrence graph is likely to indicate a poor collaboration between groupmembers. However,
409we would like to suggest that a “good” cross-recurrence graph (i.e., with a dark diagonal) is not
410necessarily indicative of a good learning group.Wewill illustrate this difference by exposing some
411of the diversity that exists between groups of highly visually-coordinated students.
412Our augmented cross-recurrence graphs (middle section of Fig. 8) color-codes each pixel to
413show which warehouse groups 13 and 20 were looking at (red pixels represent JVA on the 1st
414warehouse, green on the second one, and blue on the last one). We also added dotted squares to
415show when the experimenter gave various prompts to the groups (i.e., prompt 1 = “in which
416warehouse would you prefer to work”, prompt 2 = “which warehouse maximizes space, and
417why”, prompt 3 = “which warehouse minimizes the average distance from each shelf to the
418docks and why”, and reveal = “now I will show you numbers that answer those two questions
419to verify if your intuition was correct”). Two very different strategies appear: group 20
420analyzed the three warehouses in a serial manner. For instance, after receiving prompt 2, they
421jointly looked at the first warehouse, then the second one, and finally at the last layout. Group
42213, in comparison, continually compared the three warehouses. We do not have empirical
423evidence that one strategy is superior to the other, but common sense and the PFL framework
424would suggest that multiple comparisons between contrasting cases would increase students’
425chances of noticing important features distinguishing those layouts. One indication that this
426strategy might be more beneficial to learning is that group13 achieved higher learning gains on
427the test; indeed, they achieved the highest learning gains in the entire sample. We plan to
428quantify this behavior in future work to see whether it positively correlates with learning across
429all groups who participated in this study.
430Coming back to groups 13 and 20, there is one last piece of information worth mentioning.
431We know from Table 3 that group 20 talked slightly more than group 13 (540 vs 409 s.). On
432the bottom of Fig. 8, we show participants’ speech data. One can observe that group 20 had
433more imbalanced participation (participant 39 talked for 117 s. vs 423 s. for participant 40)
434compared to group 13 (in which participant 25 talked for 170 s. vs 239 s. for participant 26);
435thus, one group 20 student talked 78% of the time whereas one group 13 student talked 58% of
436the time. Might these differences be symptomatic of collaborative issues?
437To illuminate those results comparing groups 13 and 20, we qualitatively examined the
438videos of the experiment. It should be noted that those differences (strategy used, learning
439gains and speech distribution) are already a striking contrast to the supposedly superior (black
440and white) cross-recurrence graph of group 20.
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441Qualitative analysis

442We further compared our two groups by analyzing videos of their interactions. We generated
443videos by combining the scene cameras of the students (top left section of Fig. 9) and
444remapping their gazes onto a ground truth during task 2 (bottom left section of Fig. 9). We
445also added an animation of the cross-recurrence graph on the right side of Fig. 9, showing the
446graph up to that particular video frame. This video enabled a multi-modal analysis of the
447students’ interactions, in particular by highlighting how they combined gestures and speech to
448achieve and sustain joint attention. Groups #13 and #20 were extremely similar in that regard,
449constantly using pointing gestures to ground their verbal contributions. It is reasonable to
450believe that those deictic gestures played a large role in increasing their levels of joint visual
451attention.
452In the table below, we focus on the major differences that we observed for the two groups.
453Specifically, we focused on one behavior found to be an important predictor of a group’s
454success: how peers react to one another’s proposals (Barron 2000). A proposal can be
455accepted, rejected, challenged, or ignored. One key difference between groups 13 and 20
456was that one dyad was more likely to uncritically accept proposals, while the other was much
457more likely to challenge them (keywords highlighting this difference are marked in bold in
458Table 4):
459We found that this difference was a recurring pattern in the videos and transcripts of groups
46013 and 20. For group 20, participant 40 was extremely verbose and dominated the interaction
461by using many pointing gestures to illustrate his thought process. This was crucial for the
462group, because it allowed his peer to maintain joint attention on the warehouse layouts.
463Participant 39, on other hand, was very passive and very rarely contradicted his partner.
464There are several quite different ways to characterize Participant 39’s dyadic pattern with
465Participant 40. His behavior could be described by the “free rider effect” in teamwork
466identified by Salomon and Globerson (1989). In a disparate characterization, one could
467describe the subdominant dyad member as acquiescing to the control of the dominant dyad
468member, whose proposals reigned. Either way, the ideas generated by group 20 did not
469significantly change over the course of this activity because Participant 40’s proposals were
470rarely challenged or contradicted. These two different characterizations of Participant 39 vis-à-

Fig. 9 A video frame generated for the qualitative analysis. On the top left, we show the perspectives of the
students with their gazes in blue and green. On the bottom left, we remapped their gazes onto a ground truth (red
dots show moments of JVA). On the right side, we show the cross-recurrence graph up to that frame
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471vis Participant 40 have quite different connotations. The ‘free-rider’ label has been interpreted
472broadly as ‘loafing behavior’ (Salomon and Globerson 1989), a negative attribution, whereas
473an acquiescence interpretation is not a critique of the relatively passive dyad member, but a
474highlighting of the dominance relationship in their pattern of interaction and reasonably
475interpretable as conflict avoidance. Different strategies of intervention (or re-mediation) would
476be warranted for these two distinctive interpretations, ‘free-rider’ effect or ‘partner dominance’
477effect. A ‘free rider’ interpretation could simply prompt the passive participant about the need
478for balanced participation, whereas an acquiescence or ‘partner dominance’ interpretation
479would recommend taking effort to ensure that your viewpoint is reflected in your dyad’s joint
480work.
481Group 13 provides a strong contrast to Group 20’s asymmetrical dynamic. In this group, we
482found that participant 26 tended to act like participant 40 (i.e., by driving the interaction and
483assuming a leadership role). This was mostly manifested by the amount of speech shown on
484the bottom of Fig. 8. But participant 25 was not the kind of relatively passive participant that
485participant 39 was; whenever he did not agree with a proposal, he challenged it until the group
486reached a consensus. Those challenges were often initiated by using observations made on
487other layouts, which explains why the group was more likely to have some back and forth on

t4:1 Table 4 Excerpts of group 13 and 20’s dialogues. (e.g., E = experimenter, 25 = participant 25)

t4:2 Group 13 Group 20

t4:3 08:24 -- > 09:38
E: The first question is, in which warehouse would

you rather work, and why?
25: This one!
26: Yeah this one!
25: if you look at this one, you have less palettes

than that one
26 Because of the width here...
25: Not really!
26: yes, it’s wider
25: but wait, here that’s 4 shelves
26: Here you can’t get it out
25: but you can’t get from behind
26: yes, that’s what I’m saying […]
25: 1,2,3,4 you’re crazy. You have more space here.

00:08 -- > 01:30
E: The first question is, in which warehouse would

you prefer to work, and why?
40: I think this one is good (2nd warehouse), because

you can use half of the warehouse for loading and
the other half for unloading

39: yes but you can go faster in this one
(1st warehouse)

40: yes because in this one you only have space for
two palettes in front of the docks. It’s a little tight.
I think that I would prefer to work in this one
(2nd warehouse). Maybe I would like this one too

39: there’s enough space between the shelves
40: yes, and in this one [pointing at the 1st

warehouse] the shelves are too tight
t4:4 12:40 -- > 13:52

E: if you could change something in each warehouse,
how would you improve them?
26: Hmmm so...
25: I would add two shelves, like that, there. Otherwise...
26: What if we put those like that... to add more shelves
25: No; you can add two here, that’s 18 additional

palettes
26: Otherwise... one here
25: No, because then if you take a palette from here,

you have to back off like that, even if someone’s
coming from that direction

08:12 -- > 09:11
E: if you could modify those warehouses to minimize

the average distance to each shelf, what would you
do?

40: What would I do? For instance, in this one
(3rd warehouse), I would move those shelves to
the corners

39: yes right here
40: This one and that one, I put them here, and those

two (in the middle), I would put them there
39: yeah
40: No no, this doesn’t make sense. It doesn’t change

anything. I was thinking, those two you put them
there

39: yes
40: but then you’re too far away from this shelf
39: well, it’s not too bad.
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488different warehouse layouts (as shown on the colored cross-recurrence graph in Fig. 8). Thus, a
489continuous refinement of their proposals seemed to be beneficial to their conversation, while
490group 20’s reflection stayed on a more superficial level.

491Detecting imbalances of participation in the eye-tracking data

492The next question is whether this asymmetrical collaboration dynamic behavior pattern
493can be detected from the eye-tracking data. We propose one approach here; other measures
494might provide the same result. We started by identifying, for each moment of joint
495attention (i.e., each red dot on Fig. 9), which student initiated that episode. In our case,
496we define the initiator as the person whose gaze was most present in this area during the
497previous second. While we recognize that this definition is arbitrary, it is arguably a
498reasonable first step in capturing leadership behaviors. We then computed the proportion
499of the JVA moments that each student initiated, and then applied this proportion to the
500percentage of JVA moments achieved by the group. We took the absolute value of the
501difference between the score of each participant in a group to represent the (im)balance of
502a group’s “visual leadership”. As an illustration, a group may achieve joint attention
503during 25% of their time collaborating together; let us say that one student initiated 5%
504of those moments of JVA, while the other student initiated 20% of those moments.
505Following the computation above, this group would receive a score of abs(0.05–0.20) =
5060.15. This measure is shown on the x-axis of Fig. 10.
507Points on the right side of the graphs (with higher values) represent groups where one
508person was more likely to initiate more moments of JVA; points on the left side of the graph
509(with values closer to zero) represent groups where both students were equally likely to either
510respond or initiate a moment of JVA. The y-axis shows learning gains computed at the group
511level. We found a negative correlation between dyads’ learning gains and the absolute
512difference of students’ visual leadership during the analysis task: r(23) = −0.33, p = 0.10 and
513the construction task: r(23) = −0.47, p = 0.02. This negative correlation suggests that groups
514who did not equally share the responsibilities of initiating and responding to offers of JVAwere
515less likely to learn. This result shows that we could potentially recognize a form of the “free-
516rider”or “partner dominance” effect by looking at the eye-tracking data in a collaborative
517setting.
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Fig. 10 Negative correlation between students’ learning gains and their visual leadership (i.e., the difference
between the percentage of moments of JVA initiated by each participant). Left side shows the scatter plot for the
analysis task (r = −0.33, p = 0.10) right side shows the scatter plot for the construction task (r = −0.47, p = 0.02).
Green dots are dyads in the 3D condition, blue dots dyads in the 2D condition
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518Discussion

519This paper makes four contributions to the study of collaborative learning groups. First, it
520presents a methodology to process the data coming from two mobile eye-trackers and
521capture levels of Joint Visual Attention in co-located settings. Previous work (e.g., Jermann
522et al. 2011; Richardson and Dale 2005) studied remote collaborations where participants
523were in different physical spaces and collaborated remotely. This makes our contribution
524more ecological and opens new doors for analyzing face-to-face and side-by-side interac-
525tions. Second, we qualitatively analyzed the interactions of two dyads with high levels of
526JVA and described a case where it produced low learning gains: we found that the second
527student was less likely to challenge his peer’s proposals, which prevented the dyads from
528refining their understanding of warehouse management. Third, we showed that augmenting
529cross-recurrence graphs with spatial and verbal information provides researchers with new
530insights regarding students’ strategies and interactions: color-coding them suggests wheth-
531er a dyad is working in a serial or parallel manner when they are analyzing contrasting
532cases. We hypothesize that the latter strategy is more beneficial to learning, as measured by
533our pre and post-tests. Furthermore, adding speech data to the graphs was crucial in our
534analyses. It allowed us to visually detect imbalances in the group’s interactions and dig
535deeper into their discussion. This observation spawned the paper’s fourth contribution: we
536found that highly coordinated dyads (as measured by dual eye-trackers) were not neces-
537sarily the best learning groups. Augmented cross-recurrence graphs revealed imbalances in
538students’ verbal contributions, which can be characteristic of the free-rider effect where one
539student does most the work while his/her partner stays passive. Finally, we extended those
540results to the entire sample and found a negative relationship between students’ learning
541gains and their tendency to share the responsibility of initiating and responding to offers of
542joint visual attention. This shows that learning is promoted by productive interactions
543between participants; and, more specifically, that balanced levels of “visual leadership”, a
544form of dyadic mutuality, seems to indicate exchanges where both group members are
545significantly contributing to the discussion. We thus build on collaborative learning work
546by Barron (2000) who defines a ‘mutuality’ form of coordination in groups as ‘reciprocity
547with potential for all members to meaningfully contribute’ (p. 429).

548Conclusions and implications

549The implications of this work are that cross-recurrence graphs are highly valuable for
550distinguishing between productive and unproductive groups. But they should ideally be
551complemented with spatial and verbal information to provide a more refined multi- represen-
552tation of the multiple modalities of a group’s interactions. Past a certain threshold, high levels
553of joint visual attention make higher learning gains possible, but they do not guarantee them.
554There are multiple ways in which student dyads can establish and maintain joint visual
555attention, which is a necessary but not sufficient condition for productive interactions (for
556example socio-cognitive conflicts). This paper makes a first step in detecting the absence of
557those conflicts in visually coordinated students—by identifying imbalances in students’
558tendency to initiate or respond to offers of joint visual attention. This metric could potentially
559be used to detect groups who would benefit from formative feedback or interventions to
560regulate group behavior.
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