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9Abstract We describe preliminary applications of network analysis techniques to eye-tracking
10data collected during collaborative learning activities. This paper makes three contributions:
11first, we visualize collaborative eye-tracking data as networks, where the nodes of the graph
12represent fixations and edges represent saccades. We found that those representations can serve
13as starting points for formulating research questions and hypotheses about collaborative
14processes. Second, network metrics can be computed to interpret the properties of the graph
15and find proxies for the quality of students’ collaboration. We found that different character-
16istics of our graphs correlated with different aspects of students’ collaboration (for instance, the
17extent to which students reached consensus was associated with the average size of the
18strongly connected components of the graphs). Third, we used those characteristics to predict
19the quality of students’ collaboration by feeding those features into a machine-learning
20algorithm. We found that among the eight dimensions of collaboration that we considered,
21we were able to roughly predict (using a median-split) students’ quality of collaboration with
22an accuracy between ~85 and 100 %. We conclude by discussing implications for developing
23“collaboration-sensing” tools, and comment on implementing this approach for formal learn-
24ing environments.

25Keywords Collaborative learning . Dual eye-tracking . Network analysis
26

27Introduction Q1

28Nowadays massive datasets are becoming available for a wide range of applications, with
29education no exception: Cheap sensors can now detect every student movement and utterance.
30Massive Open Online Courses (MOOCs) over the web collect every click of users taking
31classes online. This information can provide crucial insights into how learning processes
32unfold in situ or in a remote situation. However, researchers often lack the tools to make
33sense of those large datasets; our contribution is to propose additional ways to explore massive
34log files and describe how collaboration unfolds based on gaze patterns. Eye-tracking data is of
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35particular interest for us, because the technology is becoming ever cheaper and ubiquitous.
36Several eye-tracking devices are now affordable to the general public, not just to researchers,
37and there have been multiple interesting attempts at using regular webcams (such as the ones
38integrated in laptops) to perform basic eye-tracking tasks. Even though the data generated by
39those low-cost devices is still far from being perfect, there is a trend suggesting that their price
40is steadily decreasing and their accuracy improving. On the long run, we believe that every
41single device found in the market will be equipped with some kind of eye-tracking technology.
42Given that eye-tracking will become ubiquitous over the next decade, our work pursues
43three primary aims. First, we want to be able to process large log files containing eye-tracking
44data and visually represent this information to facilitate the generation of research questions
45and hypotheses explaining collaborative patterns (cf. the data visualization section below).
46Eye-tracking dataset are generally massive, because eye movements are captured 30–60 times
47per second. As an example, the dataset we present below contains almost a million data points.
48There is no way that this amount of data can be interpreted without some kind of data
49reduction, and data visualization techniques are ideal candidates for this task. Secondly, we
50want to run graph analysis algorithms to detect patterns in the log files, which correspond to
51patterns in how subjects jointly gazed at the displayed diagram (cf. the proxies for rating
52collaboration section below). Our final goal is to investigate the relationships between the
53characteristics of those graphs with the subjects’ quality of collaboration during their task (cf.
54the prediction of dyads’ quality of collaboration section). Those three contributions are
55significant, because they contribute to several important areas of research in the CSCL
56community (e.g., visualizing, analyzing and predicting levels of collaboration in small groups
57of students).
58In the next section, we start by reviewing the literature on using dual eye-tracking setups in
59collaborative settings. We then introduce the study we conducted to collect our data and
60describe the measures that we used to rate students’ collaboration. Next, we go through each of
61the contributions mentioned above (data visualization, proxies for rating collaboration, and
62prediction of dyads’ quality of collaboration). We conclude by discussing the implications of
63each contribution for using multiple eye-trackers in learning environments.

64Related literature

65Our work lies in the intersection between traditional social network analysis and dual eye-
66tracking studies in collaborative learning settings. While there is literature in both of these
67areas, there appears to be none squarely in the intersection of those two domains; as such, we
68believe the proposed work is novel and relevant to generating insights and inspiring future
69research. We discuss the literature from related areas to justify our proposed work. More
70specifically, we 1) define visual attention for individuals and small groups of students; 2)
71review studies that have used dual eye-tracking setup to study social interaction; and 3) look at
72existing visualizations for representing collaborative eye-tracking data.
73In the context of this paper, we are interested in visual attention both for individuals and
74dyads (groups of two students). For individuals, visual attention is defined as “the behavioral
75and cognitive process of selectively concentrating on one aspect of the environment while
76ignoring other things” (Anderson 2004). Visual attention is of particular interest in learning
77scenarios, because it provides researchers with precise information regarding which resources
78students processed and which ones they neglected. For dyads, a particularly interesting type of
79visual attention is when participants synchronize their gaze with their partner (i.e., achieve
80joint attention). Joint attention is defined as “the tendency for social partners to focus on a
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81common reference and to monitor one another’s attention to an outside entity, such as an
82object, person, or event. […] The fact that two individuals are simultaneously focused on the
83same aspect of the environment at the same time does not constitute joint attention. To qualify
84as joint attention, the social partners need to demonstrate awareness that they are attending to
85something in common” (Tomasello 1995). Joint attention is fundamental to any kind of social
86coordination: young infants communicate their emotions by being in a state of synchrony with
87their caregivers, which in turn helps them achieve visual coordination when learning to speak
88(Stern 2002). Parents use deictic gestures (i.e., pointing at an event or object of interest to
89establish joint visual attention) to signal important features of the environment to their children
90(Bates et al. 1989). Professors and mentors teach by highlighting subtle nuances between
91students’ and experts’ conceptual understanding of a domain (Roth 2001). Groups of students
92rely on the coordination between their members to reach the solution of a problem (Barron
932003), which in turn impacts their level of abstract thinking (Schwartz 1995).
94Since collaboration is the main focus of this paper, we concentrate our attention on previous
95studies in CSCL (Computer-Supported Collaborative Learning) that have used eye-trackers to
96study joint attention. A foundational work is Richardson and Dale (2005), who found that the
97number of times gazes are aligned between individual speaker–listener pairs is correlated with
98the listeners’ accuracy on comprehension questions. In another study, Q2Jermann et al. (2001)
99used synchronized eye-trackers to assess how programmers collaboratively worked on a
100segment of code; they contrasted a ‘good’ and a ‘bad’ dyad, and their results suggest that a
101productive collaboration is associated with more joint visual attention. In another study, Liu
102et al. (2009) used machine-learning techniques to analyze users’ gaze patterns, and were able
103to predict the level of expertise of each subject as rapidly as one minute into the collaboration
104(with 96 % accuracy). Finally, Cherubini et al. (2008) designed an algorithm that detected
105misunderstanding in a remote collaboration by using the distance between the gaze of the
106emitter and the receiver. They found that with more gaze dispersion, the likelihood of
107misunderstandings is increased. In summary, there are multiple studies showing that comput-
108ing a measure of joint attention is an interesting proxy for evaluating the quality of social
109interaction.
110Additionally, some prior work has tried to visualize collaborative eye-tracking datasets. The
111preferred way of looking at how joint attention unfolds over time is by creating cross-
112recurrence graphs (Fig. 1). However, interpreting those graphs is not necessarily obvious
113for readers unaccustomed to this type of data visualization. To provide a clear and concise
114description of cross-recurrence graphs, we will quote the excellent explanation from Jermann
115et al. (2011): “[in a cross-recurrence graph,] the horizontal axis represents time for the first
116collaborator and the vertical axis represents time for the second collaborator. Each pixel of the
117plot corresponds to 200 milliseconds time slice (the duration of short gaze fixations are around
118100 ms). For a pixel to be colored, the distance between the fixations of the two collaborators
119has to be lower than a given threshold (70 pixels in our case).” In summary, a dark line on the
120diagonal represents two collaborators continuously looking at the same area of interest at the
121time (Fig. 1, right side), while a white or light gray diagonal means no or little joint attention
122(Fig. 1, left side). Interestingly, those graphs also show when joint attention is preceded and
123followed by a temporal lag: Dark pixels below the diagonal means that the first collaborator
124looked at a screen area after the second collaborator looked at it, and vice-versa for the pixels
125above the diagonal (i.e., the second collaborator looked at a screen area after the first
126collaborator).
127To our knowledge, however, no prior work has tried to build complex abstractions on top of
128collaborative eye-tracking data. Prior studies have mostly dealt with raw data and tried to
129visualize it as cross-recurrence graphs or use it as features for machine learning algorithms. We
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130thus propose to build large networks where nodes are visual fixations and edges are eye
131movements between those fixations. Our work deals mainly with basic graph property
132determination, since it is an exploratory attempt at building networks on top of gaze move-
133ments. This emphasis includes but is not limited to network size, degree distribution, clustering
134coefficient, and so forth (Erdos and Rényi 1960). By analyzing the attributes of the networks,
135we lay the foundation for future research, which can control for various network properties to
136determine their effect on study outcomes.
137By understanding subjects’ gaze patterns via network analysis techniques, we hope to shed
138new light on collaborative learning processes. In the next section, we describe our dataset and
139our attempt at modeling it in terms of a series of networks.

140The current dataset

141We previously conducted an experiment where dyads of students (N=42) remotely worked on
142a set of contrasting cases ( Q3Anonymous for blind review 2013). The students worked in pairs,
143each in a different room, both looking at the same diagram on their computer screen. Dyads
144were able to communicate through an audio channel over the network. Their goal was to use
145the displayed diagram to learn how the human brain processes visual information (Fig. 2). Two
146Tobii X1 eye-trackers running at 30 Hz captured their gaze during the study. In the “gaze”
147condition, members of the dyads saw the gaze of their partner on the screen, shown as a light
148blue dot, and they had the opportunity to disable this overlay by pressing a keystroke
149(interestingly, none of the students chose to deactivate the gaze awareness tool); in the control
150“no gaze” group, they did not see the gaze of their partner on the screen. Dyads collaboratively
151worked on this task for 12 min; they then read a textbook chapter for another 12 min. This text
152provided them with explanations and diagrams about visual processing in the human brain.
153The structure of the activity followed a PFL (Preparing for Future Learning; Q4Schwartz et al.
1542011) type of learning task (i.e., contrasting cases followed by a standard instruction). Students
155finally took a post-test and received a debriefing about the study goal. We found that our

Fig. 1 A cross-recurrence gaze plot (Jermann et al. 2011) is the standard way of representing social eye-tracking
data in the scientific literature. A dark line on the diagonal means that two collaborators looked at the same screen
area. The left graph represents a poor collaboration, and the right graph represents a “good” collaboration
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156intervention—being able to see the gaze of their partner in real time on the screen with the gaze
157awareness tool— helped students achieve a significantly higher quality of collaboration and a
158significantly higher learning gain compared to the control group. Additionally, the two
159eye-trackers running captured students’ eye movements during the study and stored
160these data as logs; because of technical issues, we only have the complete eye-
161tracking data for 16 pairs (N=32).
162We measured learning gains by using a pre-test and a post-test capturing students under-
163standing of the terminology used, the concepts taught, and their ability to transfer their new
164knowledge to different situations. We measured collaboration by using Meier et al. (2007)
165rating scheme. Since our measures of collaboration are central to the analyses conducted
166below, we describe them in more detail in this section. Meier, Spada and Rummel’s rating
167scheme distinguishes nine dimensions of a social collaboration (see Table 1). At the end of the
168learning activity, one researcher rates all the dyads using those nine categories and gives each
169group a score between −3 and +3. In our case, a second judge double-coded 20 % of the video
170data. Inter-reliability index using Krippendorff’s alpha was 0.81 (a value higher than 0.8 is
171considered as a reliable agreement between judges; Hayes and Krippendorff 2007). Among
172those nine dimensions, we only considered eight of them because the category “Technical
173interaction” was not applicable to our experiment: students did not need any technical skill to
174complete the activity.

175Goals

176As mentioned above, we have three goals for this paper. The first is to provide an alternative
177approach for exploring eye-tracking data, involving data visualization techniques, such as
178force-directed graphs (Fruchterman and Reingold 1991). We conjecture that uses of visuali-
179zation techniques for representing massive datasets can provide interesting insights to re-
180searchers. Previous work has sought to develop visualizations for representing dyads’ mo-
181ments of joint attention (e.g. Fig. 1; Jermann et al. 2011); we want to propose an alternative

Fig. 2 To create the nodes, we choose to divide the screen into 44 different areas based on the visual
configuration of the contrasting cases

Intern. J. Comput.-Support. Collab. Learn.

JrnlID 11412_ArtID 9202_Proof# 1 - 07/10/2014



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

182and perhaps more intuitive way of visualizing this particular kind of data, e.g., by building
183networks that represent students’ shared visual attention. Our second goal is to compute
184network measures based on those graphs, so as to examine whether some metrics are
185significantly different across our two experimental groups. Those metrics (defined on the last
186page of this paper) can provide interesting proxies for estimating dyads’ quality of collabora-
187tion. Finally, we try to automatically predict students’ quality of collaboration by feeding
188network features into machine learning algorithms.
189In the next section, we provide the rationale for using network analysis techniques as an
190alternative visualization for exploring eye-tracking data.

191Data visualization—Constructing graphs with eye-tracking data

192Rationale for using networks to represent collaborative eye-tracking data

193The main advantage of using cross-recurrence graphs is being able to analyze the temporal
194evolution of joint attention in a collaborative group. One can easily determine if a dyad started
195with a low visual synchronization and progressively became more coordinated; or if a group
196started with a good synchronization, and then lost their visual coordination because of a

t1:1 Table 1 Rating scheme used to assess students’ quality of collaboration (from Meier et al. 2007)

t1:2 Dimension Definition

t1:3 Sustaining mutual
understanding

“Speakers make their contributions understandable for their collaboration partner,
e.g., by avoiding or explaining technical terms from their domain of expertise or by
paraphrasing longer passages of text from their materials”

t1:4 Dialogue management “A smooth “flow” of communication is maintained in which little time is lost due to
overlaps in speech or confusion about whose turn it is to talk. Turn-taking is often
facilitated by means of questions or explicit handovers.”

t1:5 Information pooling “Partners try to gather as many solution-relevant pieces of information as possible.
New information is introduced in an elaborated way, for example by relating it to
facts that have already been established, or by pointing out its relevance for the
solution.”

t1:6 Reaching consensus “Decisions for alternatives on the way to a final solution (i.e., parts of the diagnosis)
stand at the end of a critical discussion in which partners have collected and
evaluated. arguments for and against the available options.”

t1:7 Task division “The task is divided into subtasks. Partners proceed with their task systematically,
taking on one step toward the solution after the other with a clear goal or question
guiding each work phase. […] Partners define and take on individual subtasks that
match their expertise and their resources. The work is divided equally so none of
the collaborators has to waste time waiting for his or her partner to finish a subtask”

t1:8 Time management “Partners monitor the remaining time throughout their cooperation and make sure to
finish the current subtask or topic with enough time to complete the remaining
subtasks.”

t1:9 Technical coordination “Partners master the basic technical skills that allow them to use the technical tools to
their advantage (for example, they know how to switch between applications, or
how to “copy and paste”).”

t1:10 Reciprocal interaction “Partners treat each other with respect and encourage one another to contribute their
opinions and perspectives. Critical remarks are constructive and factual, never
personal”

t1:11 Individual task
orientation

“Each participant actively engages in finding a good solution to the problem, thus
bringing his or her knowledge and skills to bear. He or she focuses attention on the
task and on task relevant information, avoids distractions”
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197disagreement or a conflict. The main disadvantage of using a cross-recurrence graph is the
198inability to analyze where dyads jointly gazed during the interaction. There is no way to
199recover this kind of information from this graph, which limits the hypotheses that researchers
200can generate when conducting more in-depth analyses. In summary, cross-recurrence graphs
201display highly granular temporal information, but poor spatial representation of a group’s
202visual coordination.
203Our goal is provide researchers with a complementary representation of a dyad’s synchro-
204nization: We would like to produce visualizations that show highly granular spatial informa-
205tion. Since our goal is not to replace cross-recurrence graphs but to augment them with
206additional visualizations, we will not focus on including any kind of temporal information in
207our graphs. We also want to go beyond merely counting the number of times that dyads jointly
208gazed at the same area of interest (AOIs) on the screen; we want to show how those areas are
209connected, for instance if students went back and forth between particular diagrams. This is
210especially important when looking at our learning activity, where students had to analyze
211contrasting cases: the only way that students can understand the material taught is by
212comparing features of the diagrams shown. We found that networks lent themselves well for
213this purpose: Fixations are easily represented by nodes, and comparisons between areas of
214interest (i.e., gaze movements) can be represented by edges in a network. Finally, networks
215have been intensely studied for the past decades. We can stand on the shoulders of giants by
216reusing previously defined network metrics, such as network size, density, centrality of nodes,
217number and properties of sub-graphs, and so on. This allows us to leverage knowledge from
218other fields of research when analyzing eye-tracking networks for studying collaborative
219learning.
220In the next section, we explain how we constructed graphs from the eye-tracking data and
221how we analyzed them. Additionally, we isolate the attributes that differ between the “gaze”
222condition and the “no-gaze” condition to gain further insights into the differences between our
223two experimental groups.

224Using fixations as nodes and saccades as edges in a network To construct graphs from gaze
225data, we divided the screen into 44 different areas based on the configuration of the diagrams
226learners were shown during the study (Fig. 2). Students had to analyze five contrasting cases;
227the answer to the top left and top right cases were given. Possible answers were given on the
228right. Students had to predict the answer of the three remaining cases. We segmented the
229screen into squares, which provides us with 30 areas that cover the diagrams of the human
230brain and 8 areas that cover the answer keys.
231In our approach, edges are created between nodes when we observe eye movements
232between the corresponding areas of interest. The weight of an edge is proportional to the
233number of visual transitions between the corresponding screen end-points.
234In this section, we describe graphs created with individuals as the units of analysis: Each
235network is built by using the eye-tracking data of one subject. The label on each node
236corresponds to a screen region as defined in Fig 2. The size of a node shows the number of
237fixations on this area. Node colors correspond to screen section. Blue nodes correspond to a
238diagram region (major/left side of the screen). Orange nodes correspond to answer keys (right
239column of the screen). An edge represents saccades between two regions. The width of an edge
240shows the number of times a subject compared those two regions. Those graphs were
241implemented with a force-directed layout and can be directly manipulated on a web page.
242Yet even this basic approach already reveals interesting patterns: We can observe that
243subject 1 (on the left) spent a lot of time understanding the diagram on the top right corner of
244the screen; however (s)he mostly neglected the answers on the right. Subject 2 (on the right),
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245had a completely different strategy: (s)he intensively compared answers and diagrams. Thus,
246with this visualization one can quickly identify patterns and build hypotheses to investigate
247collaborative learning patterns.
248One limitation of this data visualization approach is known as the “hair ball” problem
249(Fig. 3): since the graph is quite dense, every node is connected to a lot of other nodes and thus
250makes interpretations difficult. This problem is inherent to eye-tracking dataset: since an edge
251is a saccade, each node is going to be connected to at least two other nodes. Moreover, due to
252the limited quantity of potential nodes, our graphs are bound to be highly connected and highly
253clustered. We then tried to use standard data visualization techniques to facilitate the interpre-
254tation of these graphs. One of our attempts at solving this problem involved creating “edge-
255bundling graphs” (Selassie et al. 2011), where nodes are arranged on a ring and edges are
256bundled together to show strong connectivity between vertices. This approach was unsuccess-
257ful at isolating key patterns, unfortunately. Graphs looked similar in both conditions and did
258not exhibit any interesting pattern.
259Even though this kind of visualization already provides some interesting ways to represent
260eye-tracking data (Fig. 4), it is unfortunately too dense to provide us with any relevant visual
261patterns or network metrics that cannot be obtained with simpler methods. One way to reduce
262the size of those networks is to include the collaborative aspect of the study, by filtering out
263nodes based on students’ visual synchronization. In previous results (Schneider and Pea 2013),
264we found the amount of joint attention to be a critical factor for a student’s learning experience.
265This is why in the next section we describe how we incorporated the social aspect of our eye-
266tracking data into our visualizations. We sought to create smaller and more informative graphs
267by focusing on dyads instead of individuals.

268At the dyad level (joint attention) Our next attempt involved building one graph for each dyad.
269Here, we want to capture the moments in which dyad members were jointly looking at the same
270area on the screen. The nodes correspond to the screen areas, and edges are defined as
271previously (i.e., number of saccades between two areas of the screen for an individual).

Fig. 3 Two graphs based on individuals’ data. Blue means ‘brain diagram’, Orange means ‘answer key’ on the
right of the screen. Both graphs suffer from the “hair ball” problem since they contain many edges (i.e., each node
is connected to every other node in the graph). Note: in black and white prints, orange will appear as light gray
and blue as dark gray
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272Thus, those graphs contain information at both the individual and group level, which is why
273we create a network for each participant. At the dyad level, however, a node will only appear in
274the dyad graph if both dyad members gazed at the corresponding screen area within a 2-s
275window. Small graphs with few nodes are characteristic of poor collaboration, and large graphs
276with highly connected nodes show a potential flow of communication across members of the
277dyad. Figure 5 provides an example of this kind of contrast.
278The color scheme of the nodes is the same as used above for the graphs of individual
279subjects. However, the node size in the dyad graphs is proportional to the number of times
280dyad members looked at the respective screen area within a 2-s window. The choice of 2 s is
281based on the work done by Richardson and Dale (2005), where they find that it takes a

Fig. 4 The complete set of networks for individuals. One can notice that some networks sometimes have one big
node (i.e., one diagram was thoroughly analyzed by a student) and large edges (i.e., two diagrams were intensely
compared). Most of them are highly connected (i.e., there are a large number of edges)
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282follower about 2 s to look at the screen area that the leader is mentioning. Edges are defined as
283previously (i.e., number of saccades between two areas of the screen for an individual).
284Again, from a data visualization perspective, this approach conveys key patterns in
285collaborative learning situations. The top left graph in Fig. 5 shows a dyad in the “no-gaze”
286condition; one can immediately see that these students rarely shared a common attentional
287focus; nodes are small and poorly connected. The graph on the top right represents a dyad in
288the “visible-gaze” condition and is a strong contrast to the previous example: here students are
289looking at common items much more frequently and those moments of joint attention provide
290opportunities to compare diagrams. Nodes are bigger and better connected.
291Based on this new dataset, we computed basic network metrics. The variables below
292satisfied the parametric assumptions of the analysis of variance that we used (i.e., homogeneity
293of variance and normality). We found that in the visible-gaze condition, there were

Fig. 5 Graphs based on dyads’ data (top). The size of each node reflects the number of moments of joint
attention members of the group shared on one area of the screen. The graph on the top left is from a dyad in the
“no-gaze” condition; that on the top right from a dyad in the “visible-gaze” condition. Cross-recurrence graphs
(bottom) are shown for the same two groups as comparison; one pixel represents one second of the collaborative
task
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294significantly more nodes (F(1.30)=8.57, p=0.06), with bigger average size (F(1.30)=22.15,
295p<0.001), more edges (F(1.30)=5.63, p=0.024), and more reciprocated edges (F(1.30)=7.31,
296p=0.011). Those results indicate that we can potentially separate our two experimental
297conditions solely based on network characteristics.
298The main goal of a visualization, however, is to generate insights or hypotheses about a
299particular dataset. We believe that cross-recurrence graphs and networks allow researchers to
300generate alternative interpretations of their data. For instance, by looking at the network in
301Fig. 5 (top right) one can generate the following hypotheses: the strategy of this group seemed
302to be to compare particular diagram regions (in blue) with answer keys (in orange): for
303instance, there are several strong connections between area 35 and 43, 29 and 42, 23 and
30441, and so on. Additionally, the participants spent a lot of time comparing diagram two and
305three (as shown by node 26 and 20). When looking at the cross-recurrence graph (Fig. 5,
306bottom right), one can see that see that there are “clusters” of joint attention along the diagonal
307(as represented by dark squares). One can hypothesize that participants go through cycles of
308collaboration: they first jointly analyze an area of the screen (dark section of the diagonal), then
309explore the other diagrams on their own (light section of the diagonal), and then share their
310observations with their partner (diagonal becoming dark again). These observations can be
311used to guide qualitative data analysis when watching the videos of the experiment and for
312isolating cycles of collaboration.
313In summary, the contribution of this section is that we have shown how visualizing dual
314eye-tracking datasets as networks provides us with information not available on cross-
315recurrence graphs. Networks encode where dyads jointly looked at the same area on the
316screen, while cross-recurrence graphs describe when dyads share a joint attentional focus. The
317hypotheses that we generated from the visualizations in Fig. 6 show that both graphs can be
318used in a complementary way to construct hypotheses about collaboration patterns. Another
319contribution is illustrating how networks are useful when visualizing collaborative eye-
320tracking data, but of limited use when applied to individuals.
321In the next section, we discuss how we computed more complex metrics from those
322network and how we relate them to the dyads’ quality of collaboration. The extensive literature
323on network analysis (i.e., Erdos and Rényi 1960) provides us with numerous measures that
324describe relevant networks properties (see Appendix 1 for some examples). 325

326Proxies for rating collaboration

327Furthermore, several measures were significantly correlated with the groups’ quality of
328collaboration (discussed above): the average size of a node was correlated with the overall
329quality of collaboration (r (32)=0.62, p=0.039), as well as all the sub-dimensions of the
330collaboration quality rating scheme. The number of nodes (and edges) in the graph was
331correlated with the sub-dimensions:

332(1) Reaching Consensus: (“Decisions for alternatives on the way to a final solution (i.e.,
333parts of the diagnosis) stand at the end of a critical discussion in which partners have
334collected and evaluated arguments for and against the available options”): r (32)=0.71,
335p<0.001.
336(2) Information Pooling: (“Partners try to gather as many solution-relevant pieces of
337information as possible”): r (32)=0.56, p=0.002.
338(3) Time Management (“Partners monitor the remaining time throughout their cooperation
339to finish the current subtask or topic with enough time to complete the remaining
340subtasks”): r (32)=0.36, p<0.05.
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341Betweenness centrality is a measure of a node’s centrality in a network. It is equal to the
342number of shortest paths from all vertices to all others that pass through that node. In our case,
343the average betweenness centrality of all the nodes of the graph was the only measure to be
344correlated with the sub-dimension Sustaining Mutual Understanding (“Speakers make their
345contributions understandable for their collaboration partner, e.g., by avoiding or explaining
346technical terms from their domain of expertise”): r (32)=0.42, p=0.037. The largest node in
347the graph was more sensitive to Subjects’ Orientation Toward the Task (“Each participant
348actively engages in finding a good solution to the problem”): r (32)=0.52, p<0.001,
349Reciprocal Interaction (“”): r (32)=0.59, p<0.001 and Division of Work (“”): r (32)=45,
350p<0.001. Other measures were correlated only with one sub-dimension, which makes them
351ideal candidates for making precise predictions regarding the quality of a dyad’s collaboration.
352For instance, in graph theory one can define subgraphs in a particular network; e.g., a subgraph
353is strongly connected if every node is reachable from every other node. Thus, a strongly
354connected component (SCC) of a directed graph forms a partition into subgraphs that are
355themselves strongly connected. In our graphs, we found that the average size of the strongly
356connected component was correlated only with the sub-dimension Reaching Consensus (r
357(32)=0.39, p<0.05). Similarly, the betweenness centrality of the graph was negatively corre-
358lated with the sub-dimension Information Pooling (r (32)=−0.35, p<0.05).
359We note that we also correlated our set of 30 graph metrics with the learning outcomes of
360the activity (i.e., results of the post-test students completed). The only significant result
361ascertained was that the total number of moments of joint attention was significantly correlated
362with students’ learning gain (r=0.39, p<0.05). This finding suggests that the kind of graph
363described above (where nodes are built using dyads’ shared attention on an area of the screen),

Fig. 6 The complete set of graphs built on the dyads’ data. Upward arrows mean that the quality of
collaboration was above the median split, and downward arrows mean below
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364while useful for describing collaboration patterns, may not be as useful for predicting learning
365outcomes. This is why we will now focus our analytic attention on understanding and
366predicting the quality of a dyad’s collaboration.

367On Interpreting the correlations found between features of graphs and collaboration quality

368In this section we offer an attempt at interpreting the correlations found in Table 2. More
369specifically, we hypothesize that those graph metrics reflect different collaborative processes.
370For instance, the average node size appears to be the strongest predictor for our desired
371outcome (i.e., overall quality of collaboration). This finding makes sense on a theoretical
372level: the size of the nodes conveys the number of moments of dyadic joint attention. From the
373scientific literature in developmental psychology (Brooks and Meltzoff 2008), psychoanalysis
374(Stern 2002), the learning sciences (Barron 2003), and educational cognitive psychology
375(Schwartz 1995), it is a well-established fact that joint attention plays a crucial role in any
376kind of social interaction. What we find intriguing is that the raw count of moments of joint
377attention is strongly associated with an overall high quality of collaboration; additionally, it is
378also correlated with all its sub-dimensions (Table 2). This suggests that merely counting the
379number of times subjects share the same attentional focus provides a good approximation for
380the quality of their collaboration.
381More specifically, the number of nodes and edges in the graph are associated with the
382Collaboration Quality sub-dimensions Information Pooling and Reaching Consensus.
383Again, it makes sense that the more nodes subjects explore and compare, the better they will
384be at gathering information and reaching similar conclusions.
385It is more difficult to account for the finding for betweenness centrality (defined as the
386number of shortest paths from all vertices to all others that pass through a node; in other words,
387the node’s centrality in a network). This is principally challenging to explain because in the
388directed version of the graph, it is negatively correlated with the sub-dimension Information
389Pooling; in the undirected version of the graph, it is correlated with the overall quality of
390collaboration and five of its sub-dimensions. Since the correlations go in two different
391directions, we currently do not have any compelling account for this result.
392Measures related to the Strongly Connected Components (SCCs; sub-graphs where there is
393a path from each vertex in the graph to every other vertex) exposed interesting patterns. Both
394the size of the largest SCC, as well as the average size of the SCCs, was positively associated
395with greater success in reaching a consensus. We expect that SCCs are likely to represent the
396clusters on the screen where subjects were working closely together to solve a sub-problem.
397For instance, they can be identical regions across different brain diagrams (e.g., compare how
398the lateral geniculate nucleus is affected in different situations). A small SCC may mean that a
399dyad shared a moment of joint attention on a sub-region of the screen, but did not connect this
400node to other components of the graph. Conversely, a large SCC may mean that the dyad
401worked together on an area of the screen, and then jointly moved to another area on the screen
402to compare cases or find information to explain the sub-problem. On a higher level, the
403average size of the graph’s SCCs is likely to represent the level of synchronization for groups.
404Finally, the size of the largest node was correlated with the Subjects’ Orientation Toward
405the Task; a really large node means that the dyad spent a lot of time focusing together
406intensively on one area of the screen. One can imagine that devoting so much attention and
407effort to one place reflects subjects’ engagement toward the problem at hand.
408The complete correlation matrix can be found at the end of this paper (Appendix 2). It
409should be noted that we followed Rothman’s advice (1990) to not adjust our results for
410multiple comparison, since we are conducting exploratory data analysis (as opposed to
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411hypothesis testing). As a consequence, there is a possibility that some of those results may be
412due to chance. For this reason, we stress that future work needs to replicate those results before
413our approach can be proved to detect multiple levels of collaborative work.
414The contribution of this section is as follows: Our results suggest that network metrics are
415more powerful and more accurate than simply computing proportion of joint attention between
416two participants. Why? They are more powerful because the average node size of our graphs is
417correlated with most dimensions of our rating scheme (whereas the percentage of joint
418attention correlates only with some of them). One explanation is that the former measure
419takes into account the dispersion of joint attention on the screen, while the latter only considers
420whether or not two participants are gazing at the same area. It is likely that a good, dynamic
421collaboration is more likely to explore the problem space as much as possible rather than just
422jointly looking at a few screen regions. Our networks make this distinction possible. Our
423networks are also more accurate, because the network metrics shown in Table 2 are more
424sensitive to the various facets of a good collaboration: for instance, betweenness centrality and
425the average size of a SCC allows us to potentially discriminate between groups’ tendency to
426pool information and/or reach consensus. Only using the proportion of joint attention, in
427contrast, does not allow us to discriminate between two dimensions because it correlates with
428both aspects of students’ collaboration.
429In the following section, we will seek to predict collaboration scores using machine-
430learning algorithms. Since our network metrics seem to be useful measures for predicting
431students’ quality of collaboration, we hypothesize that feeding them into a supervised
432machine-learning algorithm should lead to accurate predictions. We acknowledge in advance
433that our dataset is rather small for this purpose and that our model is likely to over fit our
434training data. Nevertheless, we still believe that it is a reasonable first step in our overall
435research agenda to predict quality of collaboration in student dyads.

436Prediction of dyads’ quality of collaboration

437Using our current dataset, our next goal was to classify dyads into two groups: 1) dyads with a
438high quality of collaboration, 2) dyads with a lack of collaboration. We divided our dataset into
439two equal groups using a median split on the overall collaborative score and assigned a
440dummy variable for each subject (0 = poor collaboration, 1 = good collaboration). Our set of
441features included the 30 characteristics of graphs previously mentioned as well as various
442demographic data (gender, age, GPA). Finally, the dataset was completed with a last dummy
443variable representing the experimental group of the dyad (i.e., “visible-gaze” or “no-gaze”
444condition). We used three different machine-learning algorithms to predict the desired outcome
445(Naïve Bayes, Logistic Regression, Support Vector Machine) using a “leave-one-out” cross
446validation. Since we obtained our best results with SVM (Support Vector Machine; Cortes and
447Vapnik 1995), we will only report our prediction accuracy using this technique. In summary,
448our dataset had 32 rows (16 dyads) where members of a particular dyad had the same nodes
449but different edges. The output of our classification was a binary score reflecting our prediction
450for the subjects’ quality of collaboration during the task. To minimize over fitting, we used a
451Leave-One-Out Cross Validation procedure (LOOCV) and repeatedly trained our model on N-
4521 rows (training data) and predicted the category of the remaining row (test data). The LOOCV
453procedure ensures that our model doesn’t completely over fit the data and generalizes to new,
454unseen examples. Our results are summarized in Table 3.
455We were able to predict the quality of collaboration using SVM with a multi-layer
456perceptron (mlp) kernel (93.75 % classification accuracy) and applying a forward search
457feature selection. The algorithm used the following four features to make its classification
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458(the proportion in parenthesis indicates the classification accuracy when each feature is added
459to the model): load centrality (68.75 %), size of the largest edge in the graph (84.38 %),
460average degree coefficient (84.38 %), and nodes’ centrality (93.75 %).
461It should be noted that those predictions were made using only measures from the graphs.
462When using additional information—such as demographic data and a dummy variable
463representing the experimental condition of each subject—we reached a classification accuracy
464of 100 % for the overall quality of collaboration.
465The performances of the learning algorithm were similar when considered for the rating
466scheme’s sub-dimensions. We found a 96.88 % classification accuracy for Dialogue
467Management (7 features, polynomial kernel), 87.50 % accuracy for Reciprocal Interaction
468(11 features, polynomial kernel), 93.75 % accuracy for Division of Work (4 features, polyno-
469mial kernel), 100 % accuracy for Sustaining Mutual Understanding (6 features, quadratic
470kernel), 90.62 % accuracy for Information Pooling (3 features, polynomial kernel), 84.38 %
471accuracy for Reaching Consensus (2 features, polynomial kernel), 90.62 % accuracy for Time
472Management (20 features, quadratic kernel), and 90.62 % accuracy for Task Orientation (3
473features, polynomial kernel). Averaging those results, we show that for this particular task and
474dataset, our classification accuracy is around 92.71 %.
475Those results are impressive, but they need to be hedged with healthy skepticism. The small
476size of our dataset suggests that our model is probably over fitting our data, even though we
477used a LOOCV procedure. Secondly, we used a large number of features for a simple
478prediction task (i.e., binary classification). It is likely that SVM is, to some extent, cherry-
479picking the best features for separating productive versus unproductive collaborative groups.

t3:1 Table 3 Predicting students’ quality of collaboration based on network metrics using Support Vector Machine
(SVM) with a Leave-One-Out Cross Validation procedure (LOOCV)

t3:2 Sub-dimensions Accuracy Kernel # Features
used

Top three features

t3:3 Dialogue management 96.88 % Polynomial 7 Number of nodes with out-degree >5, nodes’
load centrality, nodes’ closeness centrality

t3:4 Reciprocal interaction 87.50 % Polynomial 11 Average node size, square clustering, number
of nodes with in-degree <5

t3:5 Division of work 93.75 % Polynomial 4 Size of the largest node, average degree
coefficient, experimental condition

t3:6 Sustaining mutual
understanding

100 % Quadratic 6 Betweenness centrality, average node size,
triangle clustering

t3:7 Information pooling 90.62 % Polynomial 3 Experimental condition, size of the largest
node, number of nodes

t3:8 Reaching consensus 84.38 % Polynomial 2 Experimental condition, average size of
SCCs, average circuits’ size

t3:9 Time Management 90.62 % Quadratic 20 Average node size, size of largest node,
nodes’ centrality

t3:10 Task orientation 90.62 % Polynomial 3 Betweenness centrality, closeness centrality,
size of largest node

t3:11 Quality of collaboration
(Total)

100 % Polynomial 6 Experimental condition, betweenness
centrality, average degree coefficient

The classification task was to predict whether dyads would be below or above the median split performed on the
overall collaboration scores and subdimensions. The accuracy reported below is given for the test set
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480Thus, those results should be replicated with a larger sample size to be convincing that the
481accuracy scores reported are indeed generalizable to the larger population of students. A last
482limitation is that the samples of our data are not strictly independent: we created a network for
483each individual, even though students completed this task in dyads. This decision was
484motivated by 1) the fact that our dataset is already small (N=32), 2) the networks were vastly
485different between individuals of the same group (edges were taken from individual student,
486and most of our measures were about how nodes were connected to each other), and 3) we
487wanted our algorithm to generalize to very similar and very dissimilar networks. But overall,
488even though we suffer from the limitations listed above, those results are encouraging and
489seem to suggest that network features have some predictive power regarding students’ quality
490of collaboration.

491Microgenesis of collaboration reflected in eye-movements and prediction accuracy

492Considering the results described in the previous section, it may not be necessary to wait until
493the end of the dyad’s collaborative learning activity to make relevant predictions about their
494collaboration quality. This makes especially relevant the important developmental concept of
495‘microgenesis’, which we will explicate below for its applicability in this collaborative
496learning context. We then go on to show that the best learning algorithm for predicting the
497overall quality of a dyad’s collaboration changes over the course of their activity together.
498As the Stanford psychologist John Flavell has indicated (Flavell and Draguns 1957), his
499Clark University Professor Heinz Werner developed the concept of “microgenesis” ( Q5Werner
5001926/1948, 1956) to unite the contents and methods of experimental and developmental
501psychology (also see Catan 1986) and to study the unfolding processes of perceptual, cognitive
502and social activities. As noted by Rosenthal (2004), “Microgenetic development concerns the
503psychogenetic dynamics of a process that can take from a few seconds (as in the case of
504perception and speech) up to several hours or even weeks (as in the case of reading, problem
505solving or skill acquisition).” This vital concept of microgenesis and its associated
506microgenetic method is integral to the developmental studies of Werner and the Soviet
507socio-historical school as represented in the works of Vygotsky (1978) and Luria
508(1928/1978), as well as more recent socio-cultural process-oriented studies by Scribner
509(1984, 1985) on cognitive development in social context, in her case, for adults in the
510workplace.
511In our present case of dyads collaboratively learning about a neuroscience phenomenon
512employing diagrams and traces of one another’s gaze behaviors as displayed in our new hybrid
513representation (in which they can see both the neuroscience diagrams and, superimposed, their
514partner’s gaze patterns investigating those diagrams in real time), it is of substantial scientific
515interest to investigate the microgenesis of their collaborative processes when mediated by these
516representational resources.
517What are the temporal dynamics of dyadic gaze behavior in collaborative learning condi-
518tions when one can perceive the gaze of the other (or not, for the no-gaze condition) and track
519its shadowing, leading, or diverging nature as turns in the gaze interactivity of the dyad unfold?
520The screen to which each dyad member is attending has both the learning-relevant information
521depicted in the diagrams, and the unfolding movements of gaze patterns overlaid on those
522diagrams as they are explored by the partner. Consider that as well, each participant can both
523see and come to anticipate how his or her own gaze patterns are serving as a stimulus for the
524partner’s next gaze behavior, which also provides each of them with feedback on the
525consequences of their provision of a meaningful signal to the other as to where one is looking,
526which the other can conjecture to be useful for their joint task, and which they can elect to
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527follow, or choose to pursue their own next saccade. These couplings are providing occasions
528for learning as well, as to whether one is warranted in following the other in their gaze, or
529whether initiating one’s own saccade is more effective in harvesting learning-task-relevant
530information in the diagrams displayed. So one other fruitful area of future inquiry concerns
531through what stages of identifiable activity dyads come to reveal one individual as predom-
532inantly a leader in the collective gaze behavior of the dyad, or as predominantly a follower of
533the other’s lead.
534In Fig. 7, we show the changing nature of our predictions during the activity using
535the best learning algorithm for the overall quality of collaboration (SVM with mlp
536kernel using the four specific features described in section 4.6). We see that one
537minute before the end of the activity, our algorithm already converged to the best
538classification accuracy (93.75 %). Additionally, we reached classification accuracy
539greater than 80 % three minutes before the activity ended. This result indicates that
540~10 min is the minimum amount of time required by our algorithm to make accept-
541able predictions. Of particular interest will be further investigations that delve more
542deeply into the moment-by-moment microgenesis of the dyadic interchanges of gaze
543behaviors as they, over a short period of time, settle into a particular collaboration
544quality that comes to be defining of their session.
545On a practical level, those results have implications already quite beyond this particular
546learning activity. With more training data and additional user interface features that make
547visible to the students’ teacher these evolving collaboration patterns and their likely conse-
548quences if left unabated, one can imagine the teacher assessing students’ evolving
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549collaboration in real time. This would not only allow for a more informal evaluation of
550students’ abilities to collaboratively solve problems, but potentially enable steering on the
551teacher’s part of a more successful collaboration outcome. How to appraise development
552progress in collaboration and collaborative learning are increasingly relevant questions as
553recent educational reforms start focusing on what some call 21st century skills (Pellegrino and
554Hilton 2012), commonly considered to include collaboration, communication, innovation,
555creativity, critical thinking and problem solving. Using state-of-the-art machine learning
556techniques may enable educators to assess students’ collaborative competencies and thus
557diagnose and scaffold (Pea 2004) the areas where improvement is needed.

558Conclusion

559Our preliminary results show the relevance of using network analysis techniques for eye-
560tracking data. In particular, we found this approach fruitful when applied to social eye-tracking
561data (i.e., a collaborative task where the gaze behaviors of each member of a dyad are recorded
562simultaneously and made visible to the other member).
563More specifically, we found that different aspects of collaborative learning were associated
564with different network metrics. The average size of a graph’s nodes appeared to be a good
565proxy for the overall quality of dyadic collaboration; the number of nodes and edges in the
566graph can be used to estimate to what extent dyads try to reach a consensus and pool
567information to find a good solution to the problem faced. The size of the largest node in the
568graph seems associated with subjects’ orientation toward the task, division of work and
569tendency to maintain reciprocal interaction. Finally, measures related to SCCs (size of the
570largest SCC, average size of the SCCs) were associated with dyads’ efforts to reach consensus.
571Of course, more work is needed to replicate those results. But overall, we found that network
572analysis techniques can be used advantageously to further our understanding of group
573collaboration processes.
574We found that applying machine learning algorithms produced interesting results.
575We were able to classify dyads’ quality of collaboration with an accuracy of 92.71 %
576on average (across the various sub-dimensions of the collaboration rating scheme we
577used). We develop the implications of those results for classroom instruction in the
578Discussion section.
579Our work has limitations worth noting. First, we studied only one particular kind of
580collaboration (i.e., remote collaboration). It is an open empirical question how well these
581results generalize to other collaborative situations, as it is likely that in situ interactions are
582different from online collaborative work because so many other streams of perceptual infor-
583mation are mutually available to participants in a co-located setting (Streeck et al. 2014).
584Another limitation is the type of task used in our study: we decided to ask participants to study
585a set of contrasting cases, where visual comparisons between diagrams are key to understand-
586ing the concepts taught. Thus, building networks based on collaborative eye-tracking data
587seems to be appropriate here, but it is not clear whether this approach would generalize to other
588types of tasks. It should also be noted that our approach was successful because we only
589considered static areas of interest; it is not clear how one would apply this method to dynamic
590AOIs. Additionally, we computed network metrics with only 32 students (16 dyads); a larger
591subject population may well yield more statistically significant patterns. Finally, as highlighted
592above, our dataset is relatively small and the machine-learning algorithm is likely to over fit
593our training data. In summary, those results need to be replicated and extended to other
594collaborative situations and larger datasets.
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595Future work

596One promising extension of our work will be to provide a case study where our
597graph visualizations help other researchers gain further insights into their own
598datasets. We believe that network visualizations can advantageously complement
599existing plots and graphs for initial data exploration, and that various social settings
600could benefit from the visualization developed in this paper (e.g., parent-infant
601interactions, diplomatic negotiations, psychotherapeutic dialogues, brainstorming ses-
602sions, or sales activities).
603Another direction for future work is to include voice data in the machine-learning algo-
604rithm. A moment of joint attention can be accidental or coordinated (e.g., via verbal instruc-
605tions). Differentiating between those two categories would certainly allow our predictions to
606be more accurate early on during the microgenesis of the interaction. Processing the voice
607characteristics (for instance variation in pitch) would also help us refine our features: certain
608patterns are known to reflect a high arousal (Pentland 2010), which can signal dyads that they
609may be reaching an insight.
610Finally, the indicators described in Table 2 (network metrics correlated with a
611positive quality of collaboration) should be analyzed in greater depth to provide
612further insights into the graph structure. For some of the indicators, it is yet not clear
613why they are associated with a positive collaboration. A more fine-grained analysis
614of those indicators would probably provide additional information concerning our
615dataset.

616Discussion

617This work provides three significant contributions. First, we developed new visuali-
618zations to explore social eye-tracking data. We believe that researchers can take
619advantage of this approach to discover new patterns in existing datasets. Second,
620we showed that simple network metrics might serve as acceptable proxies for evalu-
621ating the quality of group collaboration. Third, we fed network measures into machine
622learning algorithm, which seems to suggest that those features can predict multiple
623dimensions of a productive collaboration. As eye-trackers become cheaper and widely
624available, one can develop automatic measures for assessing the dynamics of people’s
625collaborations. Such instrumentation would enable researchers to spend less time
626coding videos and more time designing studies and exploring patterns in their data,
627thus providing augmentation tools that enable humans and computers to each play to
628their strengths in the human-machine systems for studying collaboration. In this
629regard, we pursue the vision of the co-evolution of human-computer intelligent
630systems envisioned by Licklider (1960) and Engelbart (1963). In formal learning
631environments, such measures could be computed in real time; teachers could employ
632such metrics of ‘collaboration sensing’ to target specific interventions while students
633are at work on a task. In informal networked learning, collaboration sensor metrics
634could trigger hints or provide other scaffolds for guiding collaborators to more
635productive coordination of their attention and action. We also envision the extension
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636of such network analyses as these for eye tracking during collaboration to other
637interaction data related to interpersonal coordination and learning, such as gestures
638and bodily orientation. This emerging-edge work could be quickly implemented in
639classrooms as the hardware becomes widely available and privacy concerns are
640sufficiently addressed in human subjects protocols.
641These results may also have implications beyond the classroom, for instance, in
642any situation resulting in a social construction (e.g., diplomatic compromises, business
643meetings, group projects, negotiations). As previously mentioned, interpreting and
644using subtle social signs as predictors may help us define the essential characteristics
645of a good collaboration in a more nuanced way; and consequently, to suggest ways to
646improve and teach collaborative skills as well as to better understand ‘collaboration’
647as a theoretical construct.

648Appendix 1

649

650

t4:1 Table 4 Social network analysis (SNA) glossary for eye-tracking graphs

t4:2 Construct Definition Mentioned
on page #

t4:3 Directed graph “A directed graph is a graph, or set of nodes connected by edges,
where the edges have a direction associated with them.” (w)

5,7,11,13

t4:4 Undirected graph “An undirected graph is a representation of a set of objects where
some pairs of objects are connected by links, and where links
do not have a direction associated with them” (w)

13

t4:5 Weight of an Edge In an eye-tracking graph, the weight of an edge corresponds
to the number of gaze movements between two predefined
areas on a screen.

6

t4:6 Node of a dyadic graph The node of a dyadic graph represents a moment of joint
attention between the two members of the dyad. The size
of the node shows how many times students looked at the
same area on the screen at the same time.

9,10

t4:7 Highly connected nodes A highly connected node is connected to most of the other nodes
in the graph, which creates a large number of edges.

8,9,10

t4:8 Reciprocated edges In a directed graph, an edge from node A to node B is reciprocated
if the graph also has an edge from node B to node A.

10

t4:9 Betweenness centrality “Betweenness centrality of a node v is the sum of the fraction
of all-pairs shortest paths that pass through v” (n)

11,13,15

t4:10 Largest node of the graph The largest node of a dyadic eye-tracking graph is the area of the
screen where students jointly spent most of their attention.

11,13,14,18

t4:11 Strongly connected
component (SCC)

“A graph is said to be strongly connected if every vertex is
reachable from every other vertex. The strongly connected
components of an arbitrary directed graph form a partition into
subgraphs that are themselves strongly connected.” (w)

11,13,14

General definitions (not related to eye-tracking data) are from networkx.github.io (n) or Wikipedia.com (w)

(retrieved on 03/08/2014)
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