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12Abstract
13Over the last decade, there has been a renewed interest in capturing twenty-first century
14skills using new data collection tools. In this article, we leverage an existing dataset where
15electrodermal activity (EDA) was used to identify markers of productive collaboration.
16The data came from 42 pairs of participants (N = 84) who had no coding experience and
17were asked to program a robot to solve a variety of mazes. Because little is known on how
18physiological synchrony relates to collaborative learning, we explored four different
19measures of synchrony: Signal Matching (SM), Instantaneous Derivative Matching
20(IDM), Directional Agreement (DA) and Pearson’s Correlation (PC). Overall, we found
21PC to be positively associated with learning gains (r = 0.35) and DA with collaboration
22quality (r = 0.3). To gain further insights into these results, we also qualitatively analyzed
23two groups and identified situations with high or low physiological synchrony. We
24observed higher synchrony values when members of a productive group reacted to an
25external event (e.g., following instructions, receiving a hint), oscillations when they were
26watching a video or interacting with each other, and lower values when they were
27programming and / or seem to be confused. Based on these results, we developed a
28new measure of collaboration using electrodermal data: we computed the number of
29cycles between low and high synchronization. We found this measure to be significantly
30correlated with collaboration quality (r = 0.57) and learning gains (r = 0.47). This measure
31was not significantly correlated with the measures of physiological synchrony mentioned
32above, suggesting that it is capturing a different construct. We compare those results with
33prior studies and discuss implications for measuring collaborative process through phys-
34iological sensors.

35Keywords Biosensors.Collaborativelearning.Physiologicalsynchrony.Electrodermalactivity.

36Galvanic skin response wristbands
37

38Introduction

39In educational research, there has been a renewed interest in leveraging new data streams for
40capturing students’ learning processes that go beyond the acquisition of conceptual knowl-
41edge. With an ever-increasing ease of access to information, educational researchers are more
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42and more interested in “21st century skills” (Dede 2010). These skills include (but are not
43limited to) students’ curiosity, critical thinking, collaborative skills, grit, persistence or crea-
44tivity. Having accurate and reliable tools for capturing these skills can pave the way for new
45kinds of instruction, for example by displaying levels of mastery to teachers through dash-
46boards (Martinez Maldonado et al. 2012); by designing awareness tools for students (Buder
472011); or by adapting the learning environment in real time according to the learner’s state
48(Wang et al. 2006). To reach this goal, educational researchers are starting to use multimodal
49sensors and learning analytics to richly capture students’ behavior, for example through
50Multimodal Learning Analytics, (MMLA; Blikstein and Worsley 2016). MMLA is opening
51new doors for educational researchers, by allowing them to capture large amounts of process
52data that can be leveraged in adaptive systems.
53Among the vast array of twenty-first century skills and MMLA measures available to
54researchers, this paper focuses on collaborative learning and electrodermal data. For students’
55collaboration, self-regulated, co-regulated, and socially shared regulation of learning play in
56important role in small groups (Hadwin et al. 2011). Prior work (e.g., Haataja et al. 2018) has
57found evidence that physiological synchrony can be associated with a group’s ability to
58regulate itself. We build upon this work, and further explore how galvanic skin response
59relates to productive interactions. More specifically, we computed metrics of physiological
60synchrony and correlated them collaboration quality in dyads. To gain a better understanding
61of these indicators, we qualitatively analyzed a low performing and high performing group and
62analyzed how their levels of physiological synchrony changed during a collaborative learning
63activity. This analysis inspired a new measure of collaboration, where we captured the number
64of cycles of high / low physiological synchrony that each group experienced.
65The article is structured as follows: first, we describe theories of collaborative learning and
66prior work that used electrodermal activity for studying collaborative processes. We describe the
67study where the data was collected, our preprocessing procedure and analyses. We then present
68our quantitative and qualitative results. We conclude with a discussion of our findings, highlight
69some limitations of our approach, and describe potential future work for this line of research.

70Literature review

71What does good collaborative learning look like?

72While there are a wealth of theories of collaborative learning, we focus on Roschelle’s (1992)
73framework of convergent conceptual change. In this framework, collaboration is seen as the
74process of constructing shared meanings for conversations, concepts, and experiences. This
75process has been extensively studied from a psycho-linguistic perspective and is referred to as
76grounding (Clark and Wilkes-Gibbs 1986). Building a common ground ensures that collabo-
77rators are on the same page and share a common definition of the terms used. From this
78perspective, grounding allows group members to anticipate and prevent misunderstandings.
79Educational researchers go beyond the psycho-linguistic definition of grounding, however, to
80focus on shared meaning making (Stahl 2007). Shared meaning making is associated with “the
81increased cognitive-interactional effort involved in the transition from learning to understand
82each other to learning to understand the meanings of the semiotic tools that constitute the
83mediators of interpersonal interaction” (p. 31; Baker et al. 1999). It gradually leads to the
84construction of new meanings and can result in conceptual change.
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85More concretely, educational researchers have identified mechanisms that promote ground-
86ing and shared meaning making: good collaborators are proficient at articulating and clarifying
87their thinking (Webb et al. 1995); they explicitly restructure their understanding of ideas to
88make visible what they do and do not know (Cooper 1999); they engage in elaborative
89processing, by building on their partner’s ideas (Damon 1984); they actively co-construct
90ideas with peers (Webb and Palincsar 1996); they negotiate meanings and solve conflicts by
91providing sophisticated (counter-)arguments (Baker 2003). A pre-requisite for these behaviors
92is that group members participate equally to the shared meaning making process; a free-rider or
93sucker effect (Salomon and Globerson 1989) prevents good collaboration from emerging.
94Equality in participation among individuals in groups has been theorized to be critical for
95successful collaborative learning (i.e., Mutuality; Damon and Phelps 1989). This motivates the
96analysis described in this paper, where we hypothesize that productive interactions between
97learners is associated with higher physiological synchrony, and a free rider effect is correlated
98with less physiological synchrony. In the section below we describe prior work on physiolog-
99ical synchrony.

100Electrodermal activity (EDA) in educational research

101Electrodermal Activity (EDA) is electrical change measured at the surface of the skin, which
102occurs when the skin receives innervating signals from the sympathetic nervous system. The
103sympathetic system is activated in case of a physiological activation such as physical exertion
104or cognitive workload, and electrical conductance increases as the pores begin to fill with
105sweat. EDA is generally considered to be a reliable way of measuring sympathetic activation
106(Dawson et al. 2007). In educational research, EDA has been used to capture students’
107affective state. As an example, Arroyo et al. (2009) used data from four different sensors
108(camera, mouse, chair, and EDAwristband) to predict students’ affects in a school setting and
109were able to explain 60% of the variance of their emotional state when interacting with
110intelligent tutors.
111Of interest in the current paper is the use of physiological sensors to study the quality of
112social interactions. There is some theoretical basis for connecting productive collaboration
113with physiological synchrony. For example the “chameleon effect” suggests that partners who
114are in agreement tend to imitate each other (Chartrand and Bargh 1999). The “emotion
115contagion” effect describes situations where partners who develop empathy for each other
116tend to feel similar emotions (Parkinson and Simons 2009). We expect a similar effect to take
117place in collaborative learning settings, and physiological synchrony can serve as a proxy for
118capturing it.
119Prior work has identified various indicators of physiological coupling indices (PCIs) and
120correlated these measures with different outcome measures. Pijeira-Díaz et al. (2016), for
121example, used Signal Matching (SM), Instantaneous Derivative Matching (IDM), Directional
122Agreement (DA) and Pearson’s correlation Coefficient (PC).In a nutshell SM captures the
123difference between two EDA time-series; IDM the rate of change; DA the direction of those
124changes; and PC the linear relationship between them. While Fig. 1 provides a visual
125representation of these four PCIs, we describe these indicators in more detail under the
126“Methods” section.
127Montague et al. (2014) found indicators of physiological synchrony to be associated with
128task performance for pairs of participants in a multitask environment under varied task and
129technology conditions. More specifically, Elkins et al. (2009)‘s findings suggest that PC and
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131collaborative problem-solving task (i.e., designing a healthy, appropriate breakfast for an
132athlete training for a marathon), Pijeira-Díaz et al. (2016) found that IDM best predicted
133collaborative interactions, and DA was positively associated with learning. In a collaborative
134game, Järvelä et al. (2014) collected physiological data in dyads of learners and found that PC
135was correlated with participants’ interaction and self-reported social presence. In a continuous
136tracking-task simulating teleoperation, Henning et al. (2001) reported that PC was a significant
137predictor of completion time in two-person teams. In a four-persons team, they found that PC
138was also associated with teamwork effectiveness during real planning meetings (Henning et al.
1392009). Finally, Chanel et al. (2012) compared cooperative and competitive play and found PC
140to be correlated with conflicting interactions. Table 1 summarizes prior work on physiological
141synchrony.
142In summary, there is evidence that indicators of physiological synchrony are associated
143with outcomes of interest to educational researchers (social interactions, learning, task perfor-
144mance). However, prior work has mostly looked at PC, and PC appears to be associated with a
145wide range of collaborative processes. Additionally, there is not a clear understanding of the
146difference between the four physiological indicators considered in this article (PC, DA, IDM,
147SM). These issues are the main focus of this article. In the next section, we present the study
148where the data was collected, describe our measures of physiological synchrony and correlate
149them with our dependent measures (i.e., task performance, learning gains, collaboration
150quality).

Fig. 1 Avisual representationQ1 of the four PCIs used in this article (PC, SM, IDM, DA). Blue lines represent one
participant, green lines represent the other participant. Red lines represent how each PCI is computed

t1:1 Table 1 Summary of Results from prior studies (reproduced and augmented from Pijeira-Díaz et al. 2016)

t1:2 Construct & Task PCI Study

t1:3 Team Performance (military task of building
clearings for four-person teams)

DA, PC Elkins et al. (2009)

t1:4 Team Performance (a monitoring, tracking,
and resource management task)

SM, IDM, DA, PC Montague et al. (2014)

t1:5 Collaboration, Task Performance, Learning
(design of a healthy, appropriate breakfast for
an athlete training for a marathon)

SM, IDM, DA, PC Pijeira-Díaz et al. (2016)

t1:6 Teamwork (continuous tracking task
simulating teleoperation)

PC Henning et al. (2001)

t1:7 Interaction (dyads play a cooperative or competitive game) PC Järvelä et al. (2014)
t1:8 Completion Time (20 real planning meetings

over a 6-month period)
PC Henning et al. (2009)

t1:9 Conflicting interactions (dyads play a
cooperative or competitive game)

PC Chanel et al. (2012)
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151Research Q2questions

152Our research questions are as follows:

153– RQ1: Are measures of physiological synchrony (PC, DA, IDM, SM) significantly
154correlated with collaboration quality, task performance and learning gains?
155– RQ2a: By looking at line graphs of physiological synchrony, can we relate events of
156interest to peaks (sharp increase), oscillations (jolt) and valleys (sharp decrease)?
157– RQ2b: Do these observations vary between a high-performing and a low-performing
158group?
159– RQ3: Based on RQ2a and RQ2b, can we define new measures of physiological synchro-
160ny – i.e., are cycles between low and high synchronization related to our three outcome
161measures?

162The study

163The data was collected in a prior study (for more information, see Starr et al. 2018). In this
164study, participants with no prior programming knowledge were paired and given 30 min to
165program a robot to autonomously solve a series of increasingly difficult mazes. Two different
166interventions were used to support collaboration (crossed in a 2 × 2 experimental design): an
167informational explanation on the benefits of collaboration and a visualization showing relative
168verbal contributions of each participant. Participants were given a pre- and post-survey on
169computational thinking skills and a demographic questionnaire at the end of the session.
170Researchers coded the quality of the collaboration, the progress of the participants, and the
171quality of their final code. During the study, two mobile eye-trackers captured where partic-
172ipants were looking, a motion sensor captured motor movement and position, and two
173Empatica E4 bracelets captured physiological data.

174Design

175The study employed a 2 × 2 between-subjects design to measure the effects of the interven-
176tions. A quarter of the dyads received neither intervention (Condition #1, “No Explanation, No
177Visualization”), a quarter received solely the visualization (Condition #2; “No Explanation,
178Kinect Visualization”), a quarter received solely the informational intervention (Condition #3;
179“Explanation, No Visualization”), and the final quarter received both interventions (Condition
180#4; Explanation, Kinect Visualization”). Participants were randomly assigned to one of the
181four conditions.
182The Informational Collaboration Intervention consisted of the researcher verbally informing
183the participants about several research findings related to collaboration such as equity of
184speech time predicting the quality of a collaboration. Dyads not assigned to conditions with
185this intervention received no such information. The Visualization Intervention used audio data
186to display what proportion of total talk came from each participant over the past 30 s. The
187proportion of the screen filled with a certain color represented the relative contribution to total
188talk time (Fig. 2, right side).
189The task required participants to use a block-based programming language to program a
190robot through a series of mazes (Fig. 2, middle). The robot came equipped with a
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191microcontroller, two DCmotors connected to wheels, and three proximity sensors on the front,
192left, and right (Fig. 2, left). Participants were first shown a tutorial video to illustrate the basic
193concepts of how to use a block-based programming language to program the robot. Following
194the video, participants had five minutes to write a simple program to move the robot past a line
195two feet ahead of it. Data collected during this tutorial activity is not included in our analysis.
196After this initial activity, a second tutorial video describing advanced features was shown to
197participants and a printed reference sheet covering the material from the video was provided.
198The advanced features included using prewritten functions to turn and methods for checking
199the values of the proximity sensors. The main activity required participants to spend 30 min
200attempting to get their robot through the increasingly more difficult mazes. As soon as a robot
201could solve a maze twice in a row, the next maze was provided. Participants did not know the
202layout of the mazes ahead of time and were encouraged to write code that could work for any
203maze. During this main activity, identical hints were given at five-minute intervals to all
204groups. See Fig. 3 for the full procedure.

205Methods

206Forty-two dyads participated in the study (N = 84). Participants were recruited from a study
207pool at a university in the northeastern United States. 62% of participants self-identified as
208students and ages ranged from 19 to 51 years old. 60% identified as female. Participants were
209compensated $20 per 90-min session of the study. No participants previously knew each other.
210In addition to a variety of other sensors (see Starr et al. 2018), an Empatica E4 wrist sensor
211(Garbarino et al. 2014) tracked several physiological markers from each participant, including
212Electrodermal Activity (EDA) at 4 Hz. During the 30-min session, roughly 7200 EDA data
213points were generated for each participant.
214Learning of computational thinking skills was assessed by a pre- and post-test consisting of
215four questions assessing knowledge of computer science principles such as looping, condi-
216tional statements, and interpreting code, adapted from Brennan and Resnick (2012) and
217Weintrop and Wilensky (2015). These questions required near-transfer and application of
218skills learned in the activity. Researchers evaluated the completeness of answers and how well
219answers demonstrated understanding of computational thinking skills. The sum of the scores
220was used to generate pre, post, and gains scores for each individual. Researchers double coded
221free response answers on 20% of the surveys and achieved an inter-rater reliability of 0.89.
222While participants worked on the task, the researcher assessed their collaboration and task
223behaviors. The dyads’ collaboration was assessed on nine scales adapted from (Meier et al. 2007)

Fig. 2 The material used in the study: the robot that participants had to program (left image), one maze (middle
image) and the Kinect-based speech visualization (right side)
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224on a − 2/+2 scale: sustaining mutual understanding, dialogue management, information pooling,
225reaching consensus, task division, time management, technical coordination, reciprocal
226interaction, and individual task orientation. See Meier et al. (2007) for a definition of those
227dimensions. Two researchers rated video recordings of the sessions using this coding scheme. The
228task behavior measures were task performance (number of mazes solved), task understanding (use
229of computational thinking concepts), and improvement over time (evidence of increased concep-
230tual or technical understanding during the task). To calculate inter-rater reliability, a second
231researchers double coded 20% of the sessions from videos collected during the session and
232achieved an inter-rater reliability of 0.65 (Cohen’s kappa), which represents a 75% agreement.
233After the post-test, participants filled out a demographic survey. Following the conclusion
234of the activity, the final block-based code each dyad created was evaluated to determine in
235abstract how well the code could successfully solve different types of mazes. A rubric was
236created to assign a score of zero to four to evaluate the use sensor thresholds, conditional
237statements, looping, nesting, and generalizability. This rubric aligned with the live coding of
238“Task Understanding” done during the experiment, serving to ensure dyads’ final products
239were fully evaluated. Quality of final student codes was discussed by raters until 100%
240agreement was reached.

241Data preprocessing

242We collected the following data from the Empatica wristbands: accelerometer, blood volume
243pulse (BVP), interbeat intervals (IBI), electrodermal activity (EDA), heart variability (HR), tag
244numbers to differentiate sections in each session. In this article, we focus on electrodermal
245activity (EDA) and describe how we preprocessed the data in the section below.

246Cleaning the data

247During the study, we asked participants to synchronize their sensors by pressing the button on
248the wristband before/after each step, which generated a tag in our dataset. By aligning these
249tags, we were able to synchronize the data from each participant and select one subset of the
250data (i.e., completing the maze task).

Fig. 3 The procedure of the study. Bottom row shows when participants were asked to “tag” using the Empatica
wristband

International Journal of Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9318_Proof# 1 - 16/03/2020



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

251Before calculating our indicators of physiological synchrony, data was cleaned by removing
252noise. Such noise or “artifacts” can be introduced whenever an individual adjusts the sensor,
253knocks the wearable against something or place pressure on the device. We used EDA
254Explorer (Taylor et al. 2015), which is a machine learning classifier that detects noise with
25595% accuracy, to remove artifacts from the data.
256In the paragraph below we describe the four physiological coupling indices we explored in
257this article: Pearson Correlation (PC), Directional Agreement (DA), Signal Matching (SM),
258and Instantaneous Derivative Matching (IDM).

259Computing indicators of physiological synchrony

260We used PC, DA, IDM and SM because they are the most commonly measures used in the
261EDA literature (see Table 1). We adopted this approach because a single signal stream (i.e.,
262EDA) may carry information from multiple phenomena, which are revealed through different
263analysis methods (similar to how multiple radio stations are carried over the same electro-
264magnetic field). In this research we add to the literature by developing methods that capture
265different pieces of information, contained in the same EDA stream. Each physiological
266synchrony measure was computed using the mathematical descriptions below this paragraph.

267Pearson’s correlation (PC) Pearson’s correlation provides an estimate of the linear relation-
268ship between two variables (here, the EDA level of both participants). For example, a positive
269correlation means that two participants were likely to be physiologically activated at similar
270times. The advantage of PC is that data from the entire session is taken into account when
271computing the measure. The drawback is that PC does not take time into account (i.e., the data
272points are looked at independently).

273Directional agreement (DA) identifies whether data points from two participants increase or
274decrease at the same time. More specifically, each data point was subtracted with the data point
275that occurred right before it (Elkins et al. 2009) to determine change in signal. We then
276compared both individuals’ data points’ change. If both data points were indicated as increas-
277ing or decreasing, then this pair of points would be in “directional agreement”. DA is the ratio
278of the total directionally agreeing pairs of points out of the total number of pairs of data points
279compared. The advantage of DA is that it captures whether participants EDA signals are going
280up or down, which makes interpretation easier. The drawback is that it doesn’t take the
281magnitude of this change into account: dyads who experience drastic changes in their EDA
282get the same DA score as dyads who experience very small changes, as long as their EDA
283signals are increasing or decreasing at the same time.

284Signal matching (SM) was used to analyze the differences in area between the curves of two
285participants (Elkins et al. 2009). A greater area between the curves means less synchrony while
286less area between the curves means higher synchrony. Thus, a negative correlation between a
287SM value and a qualitative measure would indicate that a small SM value means higher
288synchrony (and vice versa). Since individuals have different characteristics affecting their
289EDA signals, their signals need to be normalized to be on a comparable scale. We normalized
290those values using z-scores. Once the absolute differences were calculated between the data
291points of each individual, the overall mean difference of each pair was recorded. The
292advantage of SM is that it takes magnitude into account (and thus can differentiate between
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293dyads who experience very high vs very low physiological synchrony). The drawback is that
294there are important individual differences in participant’s electrodermal activity; this issue is
295somewhat alleviated by normalizing EDA scores.

296Instantaneous derivative matching (IDM) calculates the similarity between the normalized
297slopes of two individuals (Elkins et al. 2009). The slopes are calculated as the difference
298between the current point and the one ahead of it. The differences between the individuals’
299slopes were summed up and divided by the total time range observed. The following equation
300was used to compute IDM:

1

T
∑
T−1

t¼0
atþ1−atð Þ− btþ1−btð Þj j

301302303The advantage of IDM is that it provides a more precise measure of the difference between two
304slopes (compared to DA) and it combines information about the magnitude and direction of the
305slopes. The drawback is the same as SM, namely that the measure is sensitive to individual
306differences, which means that scores have to be normalized.
307In summary, the four PCIs described above capture physiological synchrony in different
308ways and have different (dis)advantages. Some measures focus on the magnitude of changes
309over time, while others focus on the direction of the signal. Because there is little to no
310theoretical rationale for choosing one over the others in the current literature, we analyze how
311these four measures relate to our dependent measures quantitatively (RQ1, RQ3) and quali-
312tatively (RQ2a, RQ2b).
313

314Filtering outliers

315Before computing measures of physiological synchrony (DA, SM, IDM, PC), we looked for
316outliers. Three groups had missing EDA data and were removed from the analysis. Figure 4
317(left) shows that each measure, except SM, has an outlier that was beyond two standard
318deviations of the mean. The right side of Fig. 4 shows the percentage of data that was removed
319after removing noisy artifacts (detected using EDA Explorer; Taylor et al. 2015). For our
320analyses, we removed outliers where too much data was either missing or noisy.

321Results

322(RQ1) - are measures of physiological synchrony (PC, DA, IDM, SM) significantly
323correlated with collaboration quality, task performance and learning gains?

324We briefly summarize the main results of the study (described in detail in Starr et al. 2018).
325Since we are interested in the relationship between physiological data and our dependent
326measures, we report correlations (i.e., collaboration quality, learning gains, task performance).
327Our coding of collaboration was significantly positively correlated with the quality of pro-
328duced code (r = 0.52, p < 0.001) as well as all three performance metrics: task performance
329(r = 0.35, p < 0.001), task understanding (r = 0.53, p < 0.001), and improvement over time (r =
3300.54, p < 0.001). Participants gained an average of 19.8% points on the survey of
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331computational thinking principles (t = 6.18, p < 0.001). The quality of the final block-based
332code dyads produced was significantly correlated with the number of mazes completed (r =
3330.45, p < 0.001), task understanding (r = 0.45, p < 0.001), and improvement over time (r =
3340.54, p < 0.001). For between conditions analyses, see Starr et al. (2018).
335The first contribution of this article are the EDA analyses (not included in Starr et al.
3362018). We first correlate the different PCIs with each other, and then with our dependent
337measures. Because all four PCIs measure physiological synchrony, we expect them to
338strongly correlate with each other. DA was significantly correlated with IDM: r(35) =
339−0.365, p = 0.026, and SM was significantly correlated with PC r(35) = −0.658, p < 0.001
340(the correlations are negative, because higher DA / PC values mean more synchrony, and
341higher SM / IDM values mean less synchrony). There was no other significant correla-
342tion between PCIs. This suggests that different PCIs might be capturing different aspects
343of participants’ physiological synchrony.
344Correlations between PCIs and dependent measures are presented visually in Fig. 5. We
345found that PC was positively correlated with learning gains: r(30) = 0.35, p < 0.05; DA was
346positively correlated with Dialogue Management: r(30) = 0.35, p = 0.063, Reaching Consen-
347sus r(30) = 0.36, p < 0.05 and Reciprocal Interaction r(30) = 0.470, p < 0.001.
348In summary, groups that were physiologically synchronized tended to achieve higher
349learning gains (as measured by PC) and have a better quality of collaboration (as measured
350by DA).

351Qualitative analyses

352To gain further insights into these PCIs, we chose to qualitatively compare two groups
353and identify which events, or behavior, seemed to be associated with more physiological
354synchrony. We focus on PC for these analyses, because 1) this measure was related to
355our main outcome measure (learning gains), and 2) PC has been found to be correlated
356with outcomes of interest in most prior work (see Table 1). Two groups were chosen
357according to the following criteria: the “best” group had to be in the top 5 groups in
358terms of its PC score, learning gains and collaboration quality. The “worst” group had to
359be in the bottom five groups in terms of the same measures. Group 35 was the best group
360according to these metrics and group 5 the worst. The research questions (RQs) for our
361qualitative analyses are as follows:

Fig. 4 Left side: boxplots for our 4 measures of physiological synchrony. We can see three outliers (one for DA,
one for IDM and one for PC). Right side: percentage of data left after noisy artifacts were removed
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362RQ2a: By looking at line graphs of physiological synchrony, can we relate events of
363interest to peaks (sharp increase), oscillations (jolt) and valleys (sharp decrease)?
364RQ2b: Do these observations vary between a high-performing and a low-performing
365group?

366Time series graphs

367To explore these research questions, we created line graphs to explore synchrony values (see
368Fig. 6). Each data point is an averaged value of a certain amount of points determined by a
369rolling window. We show some graph examples below (Fig. 6). The graph on the right side has
370a 1 min rolling window and one on the left side a 2 min rolling window. As can be seen, a
371smaller rolling window means more noise. For our purposes, we wanted to find patterns
372between the curves of the graph and events occurring in the videos. Thus, we opted to work
373with the 2 min rolling windows to smooth the data and facilitate our qualitative analysis.

374Video and graph observations

375Selecting events of interest We first took general video notes (time, observation, subjective
376judgement) to understand the overall dynamic of each group. We then selected peaks, valleys
377and oscillations from the graphs and matched the notes via time to curves. Two researchers
378identified events to analyze and circled them in red for video observations. Each red circle is a
379section for observation in our video notes (as described below).

380Video coding At every section or number labeled circle, we connect our notes from the
381video with the characteristics of the graph. We summarize our observations for groups 35
382(high performing) and 5 (low performing) below. R refers to the participant on the right,
383L to the participant on the left, and F to the facilitator. In the analysis below, we
384underline key takeaways from the transcripts and indicate in bold the data that support
385these takeaways.

*

*
*

*

*

Fig. 5 Correlations between our dependent measures (collaboration, task performance and learning) and the four
indicators of physiological synchrony. * p < 0.05, non-significant results are transparent
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386

387Group 35 (high performing group)

388We qualitatively analyze the 15 events highlighted in Fig. 7 for group 35. Because the first five
389observations happen before the main programming task and included limited conversation
390between participants, we describe them more briefly. The last ten observations are described in
391more details because they relate to participants’ collaboration and problem-solving processes.
392To answer RQ2a, we group these observations into three categories: peaks, oscillations and
393valleys. We refer to events circled in Fig. 8 using parentheses: the peak at minute 21, for
394example, is referred to as (7).

395Peaks (events 1, 3, 5, 7, 11, 13)

396In this section we analyze sharp increases in physiological synchrony. More specially, we
397observe the following peaks when: (1) participants are completing the baseline activities for
398calibrating the Empatica wristbands (meditation and Stroop tasks); (3) participants are working
399together to get the robot to run; they are engaged and excited to see their code work; they are
400working together efficiently and exhibit high levels of synchronization; (5) participants are
401listening to the end of the video tutorial; then the researcher introduces the main activity;
402participants’ synchronization increases as they get ready to program the robot. Event (7) is one
403of the highest synchronization values for this group. Both participants are fully engaged and
404paying close attention to the robot’s behavior.
405The excerpt below shows both participants getting ready to run the code and checking with
406the facilitator if unconnected blocks of code on the workspace would impact the robot’s
407behavior:
408

409

410
413[00:18:49]
414[00:18:53]
415L –“if we write to Gogo Board will it pick up everything on the screen? We dragged a lot of pieces
416out. I don’t know if you can answer this.
417F – “If you have spare pieces it should be fine”
418R - “So it’s just whatever is in the blue main box”
419F – “Right”
420R – “OK. So, let’s run that”
421[They do their first test and the robot reaches the end of the maze]
422423424

Fig. 6 Graphs with two minutes (left side) and one minute (right side) rolling windows
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Fig. 7 Physiological synchrony of group 35 (high-performing). Selected events of interest are circled in red. Red
dotted lines show when participants were asked to tag an event. Key events are provided on the right side of the
graph

Fig. 8 Physiological synchrony of group 5 (low-performing). Selected events of interest are circled in red. Dotted
lines show when participants were asked to tag an event. Key events are provided on the right side of the graph
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425Another peak happens at (11), when participants are transitioning from listening to the
426facilitator’s hint and getting back to coding. The group gets on the same page regarding the
427hint that was provided and decide how to move forward:
428

429

430
433[00:37:18] 434L - I think you should put it the whole repeat two times in the do. Is the first time it was too much of
435an angle.
436R - OK, so let’s say… then we want to turn.
437L - I think you. Yeah. Perfect.
438R - OK, let’s. So then else, do go forward. Yeah. And then do we want this to repeat forever? Maybe
439that will be at the end. Let’s try this. Yeah. So, are we going to write it? Let’s try it again?
440L - Yeah. We now have to figure out how to make go forward. But we could run this one more time.
441442443

444

445This exchange includes several acknowledgements from both group members, which
446shows that they are both engaged and on the same page. The final peak happens at
447(13). In this event, there are two peaks in rapid succession. The first seems to be
448related to the facilitator telling participants that they have five minutes left to solve the
449current maze. The second one corresponds to participants trying to finish the final
450challenge:
451

452

453
456[00:41:24] 457F – You have less than five minutes left. You can nest conditional statement box. Especially if else
458blocks to deal with more complicated scenarios. So if you have like an if else block, you could
459drag another if else block into that same spot
461[00:41:24]-
462[00:45:19]
463R - we’re just trying to figure out that logic which will probably ended up ended up being nested.
464So basically, we have three sensors. We’re probably going to want it to mostly go forward and
465then turn.
466L - Turn when it run into an obstacle or some sort for it. R - Yeah. So we can say.
467R - It seems like the “else” is probably forward. And every time we turn we want to have this
468repeat. I forgot about that. Right. Every time we turn in it needs to turn twice
469L - yeah. Should we try again
470471472

473Again, we see participants acknowledging and building on each other’s contribution. In
474summary, we found that peaks were associated with participants being engaged and working
475together towards successfully programming the robot.

476Oscillations (events 2, 6, 8, 9, 15)

477We observed oscillations when: (2) participants are watching a tutorial on how to
478program the robot. Levels of synchronization are pretty high, but they also vary, which
479could indicate that the two participants are paying attention to different parts of the
480video; (6) participants discuss strategies to solve the first maze, and they are trying to
481make sense of the interface. While they seem to be working on different aspects of the
482task and discussing different topics, they are also explaining terms to each other and
483clarifying what they don’t know. This process of establishing a common ground (in bold,
484below) was associated with more oscillations:
485

486

487
490[00:16:40]-
491[00:18:53]
492L - “Make it run for however long and then make it turn when appropriate” R - “Yeah makes sense,
493should we do seconds first?”
494L - “Program control has if then scenario, so I think if there’s a wait until, is there a time option for
495that?”
496R - “I’ll put some on the board for us to work with”
497L - “Could you just click the time so I can see what is in there? Oh maybe it’s that.. Wait”
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513

498R - “I imagine there’s a go forward for that”
499L - “You mean go forward, in direction?”R - “No, I mean go forward for that many seconds”
500L “Ohhh, got it, you probably need to attach a block to the go forward; or attach go forward to
501another block; go forward stuff would be in procedures if it had one like that”R - “Ok, we
502should also bring the forever, right?”
503L - “oh yeah”R - “Maybe we should experiment and hitting that wall”
504L - “Ok; if you have a time block now, do you want to do go forward for 2 s?”
505R - “Should we edit go forward?”
506L - “Sure”
507R - “Because I’m not sure how to edit the time”
508L - “Me neither”R - “Do you know where the expand is?”
509L - “What do you mean by expand?”
510R – [Explains expand]
511L - “Ohh…”R - “We may not need this”
512513514

515

516Event (8) shows a transition from testing the robot to revising the code. Participants are
517exploring and explaining blocks to each other. Both are engaged with the code; the participant
518on the right is slightly more engaged because she is controlling the mouse (as shown by the
519transcript below):
520

521

522
525[00:20:36]
526[00:23:03]
527R - if we look at the second one, we can see if there’s a time component and then go forward.
528Oh good. Wonder why that’s not here. So this has turned on. There’s gotta be a way here to have a
529big turn on for like three seconds. Right? You can also try using sensing. Perfect. Wonder why
530that’s not in here. Maybe we should edit it. So I’ll bring this here. I’m going to take out the go
531forward.
532L - I think this one is just choosing what direction it’s going and it looks like it’s reversed or if else
533these conditions are met then it’s the other direction, but I don’t think this is a timed one this
534example.
535R - Isn’t that the basic go forward. Yes. These go forward and go backwards. I imagine would be
536similar. It’s just that this one has a time component and this one it doesn’t. Yeah, it doesn’t. So we
537edited this one to introduce the time component that could help. Assuming we want to do it for
538three seconds or we might want to see if we can have it sense the wall in front and then turn
539here forward. Yeah, sorry. Sorry. I’m just trying to figure out how to expand it so that we can
540then add this
541L - Do you like get in these big blocks because you have to add it to a block where you don’t expand
542the block to yourself. You add the block to another block.
543R - This small block is representative of this whole big block.
544L - OK.
545546547

548

549Event (9) shows participants working together and trying to implement the hint provided by
550the facilitator. By doing so, they are building a common understanding of how the robot work
551(in bold below):
552

553

554
557[00:31:11] 558R – I want to figure out where the front sensor is - Do you want to figure out where the front
559sensor is?
560L - Cause if we could detect the square below it and turn at that
561R - Right. So is there a sensor below?
562L - I’m not sure. I think now it looks like it’s just the front and the sides
563R - So should we move it? Maybe we can test it here versus here, and see what it detects?
564L - We’ll leave it there. I’m the sensor board up. It’s just fluctuating a lot right now.
565R - oh ok. I’m going to have it go slowly. Have it go to the end because I’m not seeing a huge
566difference. OK. Yeah. So that’s sensor one,
567L - So once it hits the wall it, the sensor goes up a lot
568569570
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571(15) The facilitator administers the remaining questionnaires.
572In summary, this group seems to exhibit oscillations synchrony when they are in the
573process of building a common ground – they are actively building an understanding of
574the hardware and code in front of them. Additionally, we observed oscillations when one
575participant was more engaged than the other.

576Valleys (events 4, 10, 12, 14)

577We observe valleys (i.e., moments of low physiological synchronization) when: (4)
578participants were watching the second video tutorial; (10) the dyad was very involved
579with testing and trying to understand their situation, and then received a hint - which
580might have disoriented the two. The hint is followed by collaboration right afterwards –
581increasing level of physiological synchrony to observation (11) which has about the same
582synchronization values as (9).
583(12) This valley represents a transition where there is a realization of what is
584happening with the robot - the stop button makes it turn at the wall which is what they
585want - but they don’t understand why, and they go forward with it. The drop could be
586from R demonstrating what she realized as L is catching up with understanding. The rise
587can be from digging into this understanding.
588

589

590
593[00:38:31] 594R presses stop to show L that the robot all of a sudden turns and does what they need it to do; L says
595“Ohh” - could be the different levels of understanding or different approaches to understanding
596the situation
597598599

600

601(14) The activity ends around 47 min, and there is a transition between last activity and the
602In tagging procedure; participants remove the mobile eye-trackers.
603In summary, we observed the following trends in Group 35: when participants reacted
604to an external event (e.g., following instructions received a hint, running the robot), we
605observed higher synchrony values (peaks 3, 5, 7, 9, 11, 13). When they were watching a
606video or collaborating, we observed oscillations on the graph (2, 4, 6, 8, 9). When
607participants were programming and / or seem to be confused, we were more likely to
608observe low synchronization values (valleys 10, 12, 14). These observations are in line
609with what we would expect: when there is a salient event or when both participants are
610engaged, their levels of synchronization rise; when they work together for longer periods
611of time, these levels fluctuate; when there is a transition or when they seem confused,
612synchronization drops. In the section below, we compare these observations with a low
613performing group.

614Group 5 (low performing group)

615We identified 18 events of interest for group 5 (Fig. 8). The first 11 observations took
616place before the main programming task; we describe them more briefly. The last seven
617observations are described in more details because they relate to participants’ collabora-
618tion and problem-solving processes. To answer our first research question, we group
619these observations into three categories: peaks, oscillations and valleys.
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620Peaks (events 2, 4, 6, 8, 11, 16)

621The first 11 events take place before the main activity are about setting up the sensors,
622calibrating them, showing videos tutorials to participants and providing a warm-up task:
623(2), participants are asked to wear the mobile eye-trackers; (4) the researcher explains
624that a Kinect sensor will be tracking their body postures and gestures; (6) the researcher
625tells participant that they are going to watch a video tutorial on how to program the
626robot; (8) the researcher introduces the first activity; (11) the dyad is attempting to test
627the robot so both are actively involved (L is holding the wire, R is debugging and
628running the code). The main event (16) happens when R tries to contribute more to the
629conversation (in bold below), but L dismisses her suggestions:
630

631

632

633
636[59:44] 637F - It’s time for the next hint. So, I started using these, but you try using the if do - and also the if do else
638do blocks those will be really helpful in achieving your goal.
639L - Okay.
640F - Have you found that? If do else do block yet? It should be under program control or common blocks.
641Yeah the if do else do.
642L - Okay, alright. If do, else do.
643F - you have 10 min left.
644L - Right. if it’s less than 100. Ah okay. If we can do. No, sorry. So it’s greater than 500. Do right,
645otherwise go forward. Like that. Let’s see.
646R - What?
647L - Let it go. [the robot got stuck]
648R - Okay.
649L - Try that again. Can you try guiding it?
650R - Yeah
651L - Still around.
652R - Maybe we can decrease the sensor.
653L - No. It’s not with the sensor. It’s...
654R - Try right? And then back?
655L - Why would we want it to go back?
656R - I don’t know.
657L - Let’s try this.
658659660

661

662In summary, we found that group 5 exhibited peaks while they were watching video
663tutorials, programming, or when the second member of the dyad was trying to contribute
664to the conversation.

665Valleys (events 1, 3, 5, 7, 9, 13, 17)

666In this section we analyze the valleys of group 5: (1) the researcher is setting up the
667tasks; participants are waiting; (3) synchronization drops as participants are waiting for
668the researcher to setup the remaining sensors; (5) participants are completing the baseline
669activities for calibrating the Empatica wristbands; (7) participants are watching a tutorial
670on how to program the robot. Levels of synchronization are pretty high, but they also
671vary, which could indicate that the two participants are paying attention to different parts
672of the video; (9) the dyad attempts the first activity (quiet conversation, R is looking at
673the handouts; L directly asks questions to the facilitator instead of talking to R); (13)
674participants get a hint:
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675

676
679[00:41:44] 680F - Every five minute you get a hint. So, can I see your coding page? Yeah, so, you’re exactly on the
681right track. Your first hint is that you need to use the sensor to help achieve the task. Keep using
682a, good job. I’ll give you another hint in 5 min.
683684685

686

687At event (17), they receive another hint from the facilitator, which causes some confusion:
688

689

690
693[63:00] 694F - Okay, So you have 10 min left and your last hint is that it may be useful for you to nest if do- and if
695do else do statements with each other. So try experimenting with that as well!
696L - if do, if do else... [sounding confused]
697698699700

701

702In summary, we observed valleys primarily when participants were waiting for
703instructions or when they were receiving a hint. One possible interpretation is that the
704hint was useful to one participant, but not the other.

705Oscillations (events 10, 12, 14, 15, 18)

706In this section we describe oscillations: (10) because of some technical issues, the
707facilitator has to intervene to fix them; (12) participants are listening to the gogo board
708tutorial; they are waiting for the facilitator to setup the next task; they are trying to figure
709out which sensors is where (Fig. 9):
710

Fig. 9 Group 5 [00:37:44]-[00:40:44] the participant on the right asks his partner to hold the chord while they are
testing the robot

Schneider B. et al.

JrnlID 11412_ArtID 9318_Proof# 1 - 16/03/2020



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

711

712
715[00:37:44]-
716[00:40:44]
717L - Okay. Should I go? Okay. So, what do we want is you want to go straight go for it. When does
718it- when do you want it to turn right?
719R - To go forward... do you want to try that one?
720L - So the sensor is set in the front? Okay yes
721[…]
722L - Alright. Okay. So, let’s see which sensor it’s seeing. Would you mind holding it again?
723Make sure it doesn’t. Okay, so that sensor, what? Can you turn it off? Okay so let’s see. Let’s do
724it again. Ready to turn off. Yeah, should turn right. Let’s see.
725F - Aren’t you? So that’s where we can give you your program.
726L - There are no other sensors. Okay, so okay so, that’s sensor four. Left is sensor four.
727728729

730

731(14) R is repetitively testing the code; L is reading the cheat sheets; there is little to no
732conversation between the two participants:
733

734

735
738[00:43:44] 739L - Okay. So, the sensor. Yes. So, it fits. Yeah. So, turn it right there. Okay. I think I put it wrong.
740Let’s try it again. Yeah, you mind I’m trying it again? okay.
741[L is mumbling – there is no contribution from right; he’s making incremental changes and testing
742the robot; right is mostly just holding the chord when they’re testing the robot]
743744745

746

747(15) R is in control of the mouse and does all the programming; he corrects L contribution
748when she tries to suggest a solution:
749

750

751
754[50:00] 755R – I’m going to try that. Do you see what’s wrong? I can’t figure it out.
756L – can you try to make it turn right
757R – no it’s not - what do you mean?
758L – just turn right
759R – if it turns right, it just turns right; look. You see? What I mean to say is that when it sees that
760thing it should stop. I’m trying to make it stop and turn right.
761L – Oooh.
762763764

765

766(18) participants are coding in silence. Eventually, they successfully make the robot
767achieves its goal. The person on the left (L), however, did all the coding – R rarely contributed.
768The interaction was one-sided.
769To answer RQ2a (“By looking at line graphs of physiological synchrony, can we relate
770events of interest to peaks (sharp increase), oscillations (jolt) and valleys (sharp decrease)?”),
771we found that group 5 exhibited peaks when the sensors were calibrated (2,4), participants
772were watching video tutorials (6,11) and programming (8,16). We observed jolts during
773iterations of programming / testing the robot (10,14,15). Valleys were associated with transi-
774tion phases (1,5,7), technical issues (9) or when the group received a hint (13,17).
775To answer RQ2b (“Do these observations vary between a high-performing and a low-
776performing group?”), we observed that patterns of physiological synchrony were different
777between group 5 and 35. For example, receiving hints was an opportunity for group 35 to
778synchronize; for group 5, we observed sharp decreases when the group received a hint (e.g.,
779events 13, 17). We interpret these differences as being caused by a free rider effect: in group 5,
780one participant wrote most of the code and declined contributions from his partner. We
781observed one moment where the second participant tried more clearly to contribute (event
78216), which was associated with the high physiological synchrony. One trend that was similar
783across both groups is the tendency to exhibit a jolt when they were programming and testing
784the robot – most likely representing quick cycles of individual exploration followed by
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785episodes of collaboration. Finally, another difference is that group 35 seemed to increase its
786physiological synchrony during the main activity – whereas group 5 had a low score
787throughout the activity. These two observations provided the basis for new measures of
788collaborative synchrony. In the next section, we examine whether increase of physiological
789synchronization (i.e., positive slope) and cycles of low/high synchronization (i.e., cycles of
790individual exploration followed by collaboration) relates to our dependent measures.
791In the next section, we explore our third research questions (RQ3: “Based on RQ2a and
792RQ2b, can we define new measures of physiological synchrony – i.e., are cycles between low
793and high synchronization related to our three outcome measures?”)

794New measures of collaborative synchrony: Slope and cycles of PC

795In this section we test two hypotheses generated through the qualitative analysis above: 1)
796good collaborative learning groups tend to become more and more synchronized over time; 2)
797good collaborative learning groups go through more cycles of (dis)synchronization compared
798to low performing groups. Because we focused on PC for the qualitative analysis, we also look
799more closely at this PCI in this section. The first hypothesis was operationalized by fitting a
800regression line during the main activity and correlating the slope with our dependent measures.
801The second hypothesis used the methodology developed by (Schneider 2019); we aggregated
802the data in 30s time windows and computed the number of inflection points in a time series
803graph (i.e., how many times did the curve went up and down during the main coding activity).
804This roughly represents cycles of low/high physiological synchrony. For both measures, we
805found the same outliers as in Fig. 4. They were removed from our analyses below.
806For the first hypothesis (i.e., do slopes relate to outcome measures?), we only found one
807significant correlation between the slope of PC and Reaching Consensus r(30) = −0.370, p =
8080.037. The negative correlation indicates that groups who better managed to reach a consensus
809decreased their physiological synchrony over time (which is the opposite of our prediction).
810No other correlation was found to be significant.
811For the second hypothesis (i.e., does the number of cycles relate to our outcome mea-
812sures?), we found that the number of PC cycles was significantly correlated with a number of
813outcome measures: Sustaining Mutual Understanding r(30) = 0.642, p < 0.001, Dialogue
814Management r(30) = 0.683, p < 0.001, Information Pooling r(30) = 0.395, p = 0.025, Reaching
815Consensus r(30) = 0.450, p = 0.01, Individual Task Orientation r(30) = 0.351, p = 0.049, over-
816all Collaboration r(30) = 0.570, p < 0.001, Learning r(31) = 0.466, p = 0.006. This measure
817was not correlated with PC itself (r = −0.161, p = 0.341) or with the slope measure described
818above (r = 0.010, p = 0.955) – suggesting that it’s capturing a different construct. Additionally,
819when applying this measure to the other PCIs, we found similar results (see Fig. 10):
820These findings suggest that productive groups do not become more synchronized over time
821The number of cycles between moments of low and high physiological synchrony, however,
822seems to be an important feature of high-quality interactions (both in terms of participants’
823quality of collaboration, but also their learning gains). We discuss these results below.

824Discussion

825Our initial quantitative analyses suggest that PC is positively correlated with learning gains and
826DA is associated with our dyads’ quality of collaboration. It should be noted that our
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827correlations did not agree with prior research. In other studies (e.g., Elkins et al. 2009; Henning
828et al. 2001; Pijeira-Díaz et al. 2016), group work was found to be positively correlated with
829SM, IDM, DA and PC. Some of these differences are likely caused by how the constructs were
830operationalized. Pijeira-Díaz et al. (2016), for example, used self-report scales for capturing
831social interactions while we applied a validated rating scheme in the learning sciences (Meier
832et al. 2007). Task performance and learning gains also depend on the nature of the task and can
833vary widely in how they are measured (e.g., completion time, success, factual knowledge,
834transfer questions, etc.). But it is striking to see that compared to prior work, our four measures
835of physiological synchronization seem to be sensitive to different outcomes measures. One
836interpretation is that different PCIs might be capturing different constructs, which is also
837supported but the fact that most PCIs were not correlated with each other. Another interpre-
838tation is that these findings are the results of imperfect measures that capture different aspects
839of a group’s physiological synchrony. In any case, additional research is needed to further
840unpack the differences between these PCIs across various settings.
841Our qualitative analyses further illuminated those results. We compared a high-performing
842group with a low performing group. Initial analyses indicate that for the high performing
843group, participants had higher synchrony values when reacting to external events, oscillations
844when they were watching a video tutorial or collaborating, and lower synchrony values when
845they were programming or seemed confused. These results are in line with what we could
846expect: levels of physiological synchrony increase when participants are working together and
847decrease when they working independently. We also observed that participants in the high
848performing group seemed to become more synchronized over time. For the low performing
849group, we found that low synchronization values can indicate a free rider effect. Unlike the
850high performing group, participants exhibited less synchronization when reacting to an
851external event, such as receiving a hint. This indicates that we can potentially detect poor
852collaboration (or a free rider effect) through levels of physiological synchrony. Interestingly,
853group 5 and 35 were not representative of the results found in RQ1: overall, they did not
854visibly differ in their average levels of physiological synchrony. This highlights a limitation of
855traditional statistics (i.e., reporting results on averages), and how the aggregated findings do
856not always apply to specific groups.
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Fig. 10 Significant correlations between the number of cycles of low / high physiological synchrony for each
PCI, with our dependent measures (left side). * p < 0.05, non-significant results are transparent
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857More importantly, the qualitative analyses inspired two new measures: increased synchro-
858nization over time (through the slope of a regression line) and cycles of high / low synchro-
859nization. The first measure did not yield any significant results, except with a subdimension of
860our coding of collaboration (reaching consensus). The correlation was negative, suggesting
861that groups that were better able to reach a consensus saw their physiological synchrony
862decrease over time. One interpretation is that they created conventions on how to work
863together early on (i.e., “quick consensus building”; Weinberger and Fischer 2006), which
864was accompanied with higher levels of synchrony, and they did not revisit these conventions
865later on, which was accompanied with lower levels of synchrony. Additionally, we captured
866the number of cycles between low and high levels of synchrony and found this indicator to be
867strongly correlated with outcome measures. These findings connect with previous literature
868showing that collaborative problem-solving is a cycle between moments of understanding and
869non-understanding (Miyake Q31986), and that ideal cycles of communication are related to group
870performance (Tschan, 2002). To our knowledge, it is the first time that this relationship is
871established for physiological data.

872Limitations

873In working with EDA data to understand technology-supported collaborative learning, the
874field is still at the stage where the reliability and validity of our analysis methods are being
875refined. In studies such as the present one, there are typically multiple dependent measures that
876are correlated with each other, for example to explore possible links between EDA synchrony
877metrics and collaboration and learning outcomes. In this paper, we tested the relationship
878between 15 dependent measures and 8 measures of physiological synchrony. Performing
879multiple such statistical tests of correlation increases the chance of statistical errors and reduces
880the reliability of the analysis. When dealing with so many variables there is increased change
881of Type-1 errors. Additionally, the qualitative analysis was performed on 2 of the 42 groups,
882and these were specifically chosen because we wanted to understand the differences between a
883high performing and a low performing group (in terms of their quality of collaboration and
884learning gains). We acknowledge that these results are not representative of the entire sample,
885and that we cannot draw broader conclusions from these analyses. While the findings
886presented in this article are promising, we recognize the limitations of our analysis, and we
887envision these to be used as directions for future research. As such, their generalizability
888should be tested through further studies.

889Conclusion

890In conclusion, this article replicated prior findings showing that physiological synchrony can
891be predictive of collaborative learning. Qualitative analyses highlighted important differences
892between low performing and high performing groups and suggest that we can potentially
893identify (un)productive collaboration through physiological data. Finally, we developed new
894physiological measures of collaboration and found that the number of cycles between low/high
895synchrony was strongly associated with collaboration quality and learning gains.
896Those results are encouraging, especially in the context of developing real-time, just-in-
897time, personalized feedback to students. There is some preliminary evidence that high-
898frequency data can indeed improve collaboration: Bachour et al. (2010), for example, used a
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899representation of microphone data to display the verbal participation of each group member;
900they found that displaying this data in real-time promoted more equal participation during
901meetings. Schneider and Pea (2013) used a dual eye-tracking setup to display the gaze of pairs
902of participants in real time; they found that this “gaze awareness tool” helped learners build
903common ground (by seeing the gaze of their partner in real time, they could more easily follow
904their thought process). Abrahamson et al. (n.d.) Q4used motion sensor data to provide an
905embodied experience of the concept of ratio, which supported the acquisition of this concept
906by young learners. These three (non-exhaustive) examples suggest that sensor data has the
907potential to support learning of various skills and concepts. An open question is whether
908physiological data can provide the same benefits.
909We can imagine leveraging these measures to develop dashboards for teachers and aware-
910ness tools for students (Buder 2011) – which has not been explored for physiological data. For
911example, being able to show these indicators in real time could be an interesting way of
912supporting remote or co-located collaboration (especially in contexts where facilitators are
913coaching participants to learn good collaborative skills, or in contexts where participants are
914discussing emotionally-charged topics). This unexplored area of research could potentially
915help students study their own collaborative behaviors and reflect on how to improve them.
916In conclusion, this work opens new doors in capturing real-time indicators of collaboration
917and potentially using these indicators in real-time to support social interactions. These
918indicators could be displayed to learners and teacher to promote awareness of how collabo-
919rative processes can be co-regulated, or integrated into existing learning environments to make
920them more adaptative.
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