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12Abstract Interactive tabletops can be used to provide new ways to support face-to-face
13collaborative learning. A little explored and somewhat hidden potential of these devices is
14that they can be used to enhance teachers’ awareness of students’ progress by exploiting
15captured traces of interaction. These data can make key aspects of collaboration visible and
16can highlight possible problems. In this paper, we explored the potential of an enriched
17tabletop to automatically and unobtrusively capture data from collaborative interactions. By
18analyzing that data, there was the potential to discover trends in students’ activity. These can
19help researchers, and eventually teachers, to become aware of the strategies followed by
20groups. We explored whether it was possible to differentiate groups, in terms of the extent of
21collaboration, by identifying the interwoven patterns of students’ speech and their physical
22actions on the interactive surface. The analysis was validated on a sample of 60 students,
23working in triads in a concept mapping learning activity. The contribution of this paper is an
24approach for analyzing students’ interactions around an enriched interactive tabletop that is
25validated through an empirical study that shows its operationalization to extract frequent
26patterns of collaborative activity.

27Keywords Collocated computer-supported collaboration . Group awareness . Interactive
28tabletops . Sequence pattern mining
29

30Introduction

31Research on learning and instruction has shown that collaboration can lead to improved
32critical thinking, reduced task workload, increased retention, and a more positive attitudes
33towards the subject matter (Felder and Brent 1994; Johnson and Johnson 1986). Particular
34cognitive mechanisms that may result into learning have an increased probability to be
35triggered when students argue to convince others to change their views on problems, reach
36shared understanding, or integrate individual with group knowledge (Scardamalia and
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37Bereiter 1991; Stahl 2006). This makes collaboration skills key conditions for value
38generation, not only for learning but also in the workplace (Scheuer et al. 2010).
39However, students working together to achieve a shared goal do not spontaneously
40collaborate (Dillenbourg 1998), even if they are supported by a computer system (Kreijns
41et al. 2003). Collaborative learning is not a single mechanism; it often requires all group
42members to engage on a coordinated effort to provide a joint solution to a problem
43(Roschelle and Teasley 1995). It also demands the development of a number of skills, and
44thus teachers have a central role in providing feedback and helping students to be more
45aware of their group dynamics (Dillenbourg et al. 2011; Kirschner 2001; Slavin 1983; Webb
462009).
47Face-to-face collaboration offers particular benefits that are not easy to achieve in other
48forms of group work (Johnson et al. 2000). These include a natural channel for continuous
49interaction, exchange of non verbal cues, and increased productivity in completing tasks
50(Olson et al. 2002). The classroom is an environment where teachers commonly conduct
51small group activities to promote students’ learning and collaboration (Leonard et al. 1997).
52However, teachers have to manage their limited resources, particularly in terms of the
53attention they can give to each student, each with different learning styles, strengths and
54needs (Zhang et al. 2004). They may try to identify the groups that are collaborating more
55effectively and leave them to work more independently so that they can focus on groups that
56need more attention. As a teacher cannot attend to all groups at once, they generally cannot
57be aware of the process that some groups followed (Race 2001).
58The development of emerging pervasive shared devices, such as interactive tabletops, is
59very promising for providing a new form of support for students to collaborate and for
60teachers to monitor group work (Kharrufa 2010). The affordances of interactive tabletops
61include the provision of a work space that offers equal opportunities for each learner,
62repeatability when working with virtual content, and digital tools that give students access
63to different resources for building a solution (Piper and Hollan 2009). Tabletops provide an
64environment in which students can decide whether they work in parallel, or together as a
65group (Martinez-Maldonado et al. 2012b). They also open up new opportunities for captur-
66ing learners’ digital footprints, creating the possibility that teachers and researchers can gain
67new understanding of the collaborative processes. In particular, there is the promise that
68analysis of the digital footprints can be used to recognize patterns that can distinguish higher
69from lower achieving groups (Martinez-Maldonado et al. 2011c).
70There is a large body of research on the analysis of computer-supported collaboration
71(Soller et al. 2005), and on the emerging fields of Educational Data Mining (Baker and Yacef
722009) and Learning Analytics ( Q4Siemens and Baker, 2012). However, most of the proposals
73for automatic analysis have considered networked settings, where, in principle, all the
74interactions between students can be recorded by the system (Soller et al. 2005). When
75applied to face-to-face settings, computer supported collaboration analysis is mostly based
76on video and audio recordings (Jeong and Hmelo-Silver 2010), and oriented to researchers,
77whose focus is on the deep and detailed insights enabled by streams of data.
78Teachers need tools that can provide them with coarse-grained feedback that allows them
79to monitor what is happening in their classes (Dillenbourg et al. 2011). One challenge in the
80field is to create reliable indicators of collaborative work that can be used by teachers to
81monitor the activity, and by students to self-regulate their collaboration. Additionally, co-
82located collaboration is strongly based on verbal, as well as subtle non-verbal, interaction
83and therefore important aspects of the communication are not mediated by the technology.
84The integration of evidence of verbal activity with the data stored by the learning systems is
85not straightforward. For this reason, most of the tools that provide support to teachers, even
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86if applied in face-to-face settings, do not include these verbal utterances as part of the
87automatic input, yet it is very important. There is a need to provide technological infrastruc-
88tures that are able to integrate these verbal interactions. This leads to a more important need,
89which is the definition of analysis methods that exploit this integration.
90We present an approach to exploit the affordances of an interactive tabletop to automat-
91ically and unobtrusively capture students’ verbal interactions (speech), their physical activ-
92ity (touches on the tabletop) and their knowledge representations to produce indicators of
93collaborative work. These indicators can make visible the strategies followed by students
94and highlight possible problems in small group work. The contribution of this paper is an
95approach for capturing and analyzing students’ interactions around an enriched interactive
96tabletop, which is validated with an empirical study showcasing its operationalization for
97extracting frequent patterns of collaborative activity.
98The specific face-to-face collaborative context of our work is a small group learning
99activity in an enriched interactive tabletop. We identified the sources from which informa-
100tion can be captured in this kind of learning environment: the group as a hole, individual
101contributions, and the digital artifacts they create during the learning activity. We also
102identified the target users of the data analysis. These typically are: (i) the learners, (ii) their
103teacher, (iii) researchers, or (iv) the learning environment itself. There are three main
104components of our approach: data capture, data analytics, and data presentation. The Data
105Capture component gathers rich contextual information from the tabletop environment (in
106this study: identified actions, detected speech and aspects of the collaborative concept maps).
107The Data Analytics component can transform the captured data to produce key indicators of
108interaction or possible strategies followed by students. The third component, Data
109Presentation, which is beyond the scope of this paper, has the potential to provide the target
110users with results of the data analysis in the form of a teacher’s dashboard or knowledge.
111This paper is limited to present key information to be directly used by researchers or that can
112be used to implement a recommended system for further stages. The design of such a system
113is important and independent from the focus of this paper, although some promising work
114towards it has been reported (Martinez-Maldonado et al. 2013) and this points to the
115potential of our approach for broader uses.
116The paper is organized as follows. The next three sections present the state of research on
117interactive tabletops in education, collaboration analysis and concept mapping. Then, we
118describe our technological infrastructure. After this, we present our research questions, the
119design of the study, and an exploratory analysis of the captured data. Then, we describe our
120approach to extract patterns of activity by applying a sequence mining technique. We discuss
121the results in the final section.

122Collaborative learning around interactive tabletops

123The proliferation of surface devices, such as tablets, smart phones, and more expensive
124tabletops, is causing a shift in the possible ways that people can interact with computers
125(Hilliges et al. 2010). This is creating opportunities to make computers more ubiquitous
126rather than the center of the activity as is often the case with most of desktop/laptop
127computers. In particular, interactive tabletops can enrich a typical face-to-face setting by
128providing unconstrained orientation of a shared space, allowing the placement of physical
129items, and offering each group member equal opportunity to participate (Müller-Tomfelde
130and Fjeld 2012). However, like other technologies, tabletops themselves do not provide a
131direct improvement in learning or collaboration. Instead, they open the possibility of new
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132ways to design activities that teachers and researchers can take advantage of, to enhance
133instruction (Dillenbourg and Jermann 2010).
134The common denominator of most of the research on tabletops for education is the study
135of some interaction data, mainly obtained from observations and activity logs that the
136hardware can capture, to support qualitative analysis of collaboration. A few examples
137include the use of group observations to reveal social relationships (Falcao and Price
1382009; Fleck et al. 2009; Rogers and Lindley 2004), the analysis of symmetry of interaction
139based on the number of learner’s touches (Harris et al. 2009; Rick et al. 2009), quantitative
140measures of verbal turn taking and communication (Jermann et al. 2009; Marshall et al.
1412008; Martinez-Maldonado et al. 2012c; Rick et al. 2011), the exploration of the impact of
142users’ positions around the tabletop (Tang et al. 2010), the assessment of group products
143(Do-Lenh et al. 2009; Kharrufa 2010; Oppl and Stary 2011) and the analysis of the process
144of scripted collaboration (Kharrufa 2010).
145One of the most promising examples of work where the use of tabletops can directly help
146teachers is deploying multiple tabletops in the classroom. One approach was presented by
147AlAgha et al. (2010), who designed a multi-tabletop classroom, orchestrated by a teacher’s
148monitoring tool. This setting offers students the opportunity to work face-to-face, and they
149have access to multimedia content. It also allows the teacher to monitor, orchestrate and
150improve the class management by controlling students’ tabletops remotely (Mercier et al.
1512012). A second approach by Martinez-Maldonado et al. (2012a) explored the use of
152multiple tabletops in an authentic classroom. Notably, that work provided explicit support
153for the teacher to design, enact and assess small group activities linked to the curriculum.
154However, most of these studies were done not for the purpose of exploiting data
155automatically. Some exceptions include the visualization of tabletop data to increase
156teacher’s awareness (Al-Qaraghuli et al. 2011; Martinez-Maldonado et al. 2012b), the use
157of data mining to discover differences between groups (Martinez-Maldonado et al. 2011c)
158and an approach to analyze logs to assess teachers’ activity design (Martinez-Maldonado
159et al. 2012a).
160The analysis of verbal participation in non-interactive tabletops has shown that even
161modest indicators of speech, that can be automatically captured, are effective in supporting
162inferences about important aspects of collaboration. These include: interaction patterns, the
163evolution of the discourse flow, leadership, and behavioral changes (Roman et al. 2012). The
164automated analysis of verbal participation in interactive tabletops is an important aspect
165where there has been little research (Martinez-Maldonado et al. 2012b). Previous research
166has also investigated the impact of multi-user interactions afforded by tabletops on certain
167aspects of collaboration such as equity of participation and self-regulation (Marshall et al.
1682008). A deep understanding of the connection between the speech and physical dimensions
169of the interactions in the tabletop is still lacking. The next section describes how research on
170online collaborative systems can serve as a basis for analyzing collaboration in the tabletop.

171Collaborative learning analysis and mining

172Over the last two decades, there has been substantial progress in the development of
173technologies that enable learners to collaborate, mainly through networked systems (Soller
174et al. 2005). Large amounts of data can be captured as a result of the interaction of students
175with these systems and, indirectly, with their peers. Students’ activity can be recorded at
176different levels, from video capture, that has mostly been manually analyzed, to logging the
177system events that can be automatically analyzed by software tools. Students’ data can be
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178used for self-regulation (by students); for scaffolding, coaching and evaluation (by teachers);
179or for post-hoc analysis, design-based interventions, etc. (by researchers). This information
180can be presented to the actors through visualizations so that they can quickly interpret the
181information and take appropriate actions. Software agents can also trigger automatic regu-
182lating actions.
183The use of Data Mining or Artificial Intelligence techniques in collaborative learning
184environments has proven successful in gaining insights on the interactions within groups in
185terms of collaboration. Some research has studied collaborative learning by applying data
186mining techniques. Notable is the work done by Soller et al. (2002), who used Hidden-
187Markov Model to identify the episodes when students were sharing knowledge at a
188constrained and scaffolded object modeling networked system. Other key initial work was
189conducted by Q5Talavera and Gaudioso (2004) who presented a case in which they applied a
190clustering technique to e-learning data; they were able to build student profiles based on a set
191of features related to the user interaction with the system. Building on this previous work,
192Anaya and Boticario proposed both a supervised classification (2011) and unsupervised
193clustering (2009) techniques for grouping students according to their level of collaboration.
194Additionally, some researchers have addressed the analysis of collaboration using sequential
195pattern extraction. One important study on online learning data was performed by Perera
196et al. (2009) who explored the use of sequence mining alphabets and clustering to find trends
197of interaction associated with effective group work based on data from long term use of a
198collaborative software development tool.
199Most of these examples are based on learning settings where most of the recorded
200communication is mediated by the system, making it easier to automatically log students
201actions compared with face-to-face environments. Alternatively, in these examples it is
202commonly ignored that students can interact face-to-face or via other media (e.g., emails,
203chats or IM). There is less research in developing systems that can support collocated
204collaboration and automatically analyze students’ data compared with networked systems
205(Jeong and Hmelo-Silver 2010). Yet, research on collaboration through these systems, can
206provide the foundation for automated capture and analysis of face-to-face interaction
207through tabletops.
208Work on the analysis of indicators of collaborative learning can be found as subsets of
209research in learning analytics (Siemens and Baker 2012), educational data mining (Baker
210and Yacef 2009) or analysis of collaborative interactions (Harrer et al. 2009). These fields
211have created techniques to produce models and indicators of learners in a wide range of
212technology-based learning situations. The analysis can be targeted to develop meta-cognitive
213support, enhance regulation, facilitate assessment, or improve awareness. Dimitracopoulou
214et al. (2006) presented a taxonomy of indicators that can be used to represent aspects of
215group interaction, for example, collaboration intensity, participation rate, or division of
216labour. Some of these indicators, such as quality of collaboration or common understanding
217are difficult to detect even through human judgment. Therefore, they impose limitations to
218what can be measured automatically.
219The Data Capture and Analytics components of our approach are highly influenced by
220the taxonomy of group indicators proposed by Dimitracopoulou et al. (2004). This defines
221the indicators of collaborative work that can automatically be captured and processed from
222non face-to-face learning systems. This taxonomy sets an initial standard, which can be
223extended to face-to-face settings. It informs the definition of what data should be captured by
224a collaborative learning environment that is intended to produce indicators of group activity.
225It distinguishes five sources of information for analyzing the collaborative process: (i)
226individuals (the actions and products of specific learners), (ii) undifferentiated group
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227(information that concerns the whole group, without identifying individual contributions or
228roles), (iii) differentiated group (information in which the contribution of each learner is
229identified), (iv) the community (considering multiple groups), and (v) the society or com-
230munity). Our approach concerns only the first four aspects.
231In face-to-face settings there is substantially more information being externalized by
232learners in comparison with networked applications, for example, hand gestures, body
233language and gestures of assent, among others (Olson et al. 2002). The collaborative
234situation and channels of communication are significantly different in collocated settings.
235Therefore, the technology can capture some aspects of students’ interactions in a face-to-face
236setting (Yu and Nakamura 2010).

237Collaborative concept mapping

238We combined face-to-face collaborative learning mediated through an interactive tabletop
239with an educational tool that has the potential to foster students’ meaningful learning:
240concept mapping. This is a well established learning strategy that can be applied in a number
241of domains and is backed up by a strong community of research and practice (Cañas and
242Novak 2008). Concept mapping enables students to externalize their understanding through
243a visual representation of knowledge (Novak 1995). A concept map consists of a directed
244graph in which nodes represent concepts. These are defined as perceived regularities in
245events or objects of a domain (Novak and Cañas 2008). For example: balanced diet, proteins
246or meat. Concepts can be connected with a labeled link to create a meaningful statement
247called a proposition. For example, the concepts meat and proteins might be linked in the
248proposition: meat contains proteins using the link contains. Similarly, the earlier concepts
249can form the proposition: balanced diet includes proteins. Concept maps can serve as
250vehicles of discussion and negotiation of meaning between students (Novak 1995). They
251can be used for facilitating collaborative learning, offering students the opportunity to
252discuss ideas, present knowledge from multiple angles, identify misunderstandings, reach
253agreement, or agree to disagree (Gao et al. 2007; Novak 1995; Stahl 2006).
254Some studies have specifically explored concept mapping at the tabletop. An early example
255was a single user system that used concept maps for wiki navigation (Baraldi et al. 2006).
256Q6Tanenbaum and Antle (2009) built a system that permitted a student to create a concept map
257using tangible tokens. Do-Lenh et al. (2009) compared the use of a tabletop with a shared
258desktop computer to build collaborative concept maps. Results were negative for the tabletop;
259because sharing a personal computer forced negotiation. By contrast, a tabletop does not force
260collaboration. Later, Oppl et al. (2011) found that tabletop concept mapping offers students
261equal opportunities for participation when compared with other media. Martinez-Maldonado
262et al. (2012c) also demonstrated that tabletop concept mapping can provide students the
263opportunity to decide how to coordinate their strategies. Overall, this body of work points to
264a complex picture of the potential benefits of collaborative concept mapping at tabletops.

265System setup

266In this study, the data capture, if not comprehensive, is low cost, unobtrusive and very large
267volume; and it has the promise of generating imperfect, but useful indicators of collaboration
268similar to those described by Dimitracopoulou et al. (2004) and, more specifically, to address
269a set of research questions that are described in the next section. We used a number of tools
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270to permit students to create concept maps (individually and collectively) and, we simulta-
271neously capture information of the process followed. These tools are a desktop-based
272(CmapTools) and a tabletop-based (Cmate) concept mapping tools; and a system to unob-
273trusively capture differentiated users’ actions (Collaid).

274CmapTools (Novak and Cañas 2008) is a concept mapping editor for personal com-
275puters. In this study, students use it to build their concept maps individually. CmapTools
276offers an Extensible Language based on XML to share and export the concept maps to
277other environments. We exploit this functionality to connect the artifacts that students
278first build in private with the tabletop environment that they use to build a new artifact,
279the concept map created collaboratively in the tabletop.
280Cmate (Martinez-Maldonado et al. 2010) is a tabletop application that enables learners
281to draw a concept map that represents their collective understanding about a topic
282(Fig. 1, bottom left). Cmate provides each student with a personal menu to add the
283concepts they used in the concept map that they individually created using CmapTools.
284Students can also add any new concepts they wish. When students create propositions, a
285menu appears around the new link so they can select any of the top six linking words
286they used before or they can type a new linking word. Students also have access to a
287screenshot of the map that they created in private; this enables them to recall or to share
288their perspectives with others. Students can decide to build upon their previous concept
289maps or create a totally new group artifact.
290Collaid (Martinez-Maldonado et al. 2011a). The tabletop used in this study had a 46-in.
291LCD touch screen, offering comfortable space for up to four participants. The tabletop
292hardware can detect multiple touches at a time, but—like most current touch
293hardware—it cannot recognize which user provides an input. In order to log each
294student’s individual actions, we used Collaid.

295Collaid extends an ordinary interactive tabletop, so that it can unobtrusively determine
296which learner is touching what. It relies on an overhead depth sensor (http://www.xbox.com/
297kinect) that associates each touch performed on the interactive surface with the student who
298did the action. The system captures the overhead depth video stream and then, making use of

Fig. 1 Digital learning environment and capturing system
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299a greedy search algorithm, matches the touch with the position of each learner (Fig. 1, top
300left). We capture verbal participations and turn taking through a microphone array situated
301on one of the edges of the tabletop (Fig. 1, right). We used a 7-channel microphone (http://
302www.dev-audio.com) that distinguishes sounds based on the location of the source. In our
303case, the learners sit around the tabletop. The audio information is recorded into audio files
304and the shared database.
305Through this set of software and hardware, we can capture a multi-dimensional dataset:
306verbal interactions between learners, without attaching microphones to people; and tabletop
307data logs with the authorship of each touch at the tabletop, without attaching any gadget to
308learners’ hands or imposing additional hardware restrictions. Figure 1 shows the generic
309hardware we used, including the sensors.

310Study design and exploratory analysis

311This section describes howwe designed a study to assess whether the data captured in a tabletop
312learning environment can provide useful information about learner collaboration. We began by
313formulating research questions; these come from considering open issues in previous studies on
314collaboration in tabletops and the potential power of our four data sources (audio, touch, touch
315on other learner’s artifacts and access to individual perspectives). Next, we describe the design
316of the study to identify interaction patterns around tabletops.

317Research questions

318We identified four research questions that link the observable patterns or strategies that are
319promising for differentiating groups according to the extent of their collaboration. First,
320previous research on collaboration around interactive and non interactive tabletops sug-
321gested that groups that produce better solutions have more equality in discussion (Martinez-
322Maldonado et al. 2012c; Roman et al. 2012). This finding motivated our first two questions;
323these primarily focus on the exploration of verbal activity, and its timing in relation to the
324physical tabletop activity.

3251) Can we distinguish more collaborative from less collaborative groups by the interwoven
326stream of students’ verbal and physical participation?
3272) Can we distinguish more collaborative from less collaborative groups by extracting
328patterns of interaction based on just students’ verbal participation?

329Other studies inspired our third question; these suggested that when a learner interacts
330with digital artifacts created by other students, this may trigger further discussion that is
331beneficial for collaboration (Fleck et al. 2009; Martinez-Maldonado et al. 2012b). In the
332context of collaborative concept mapping, this may be associated with the concept of
333transactivity, which is the extent to which one group member refers to, or builds their
334own ideas upon, their peer’s contribution (Molinari et al. 2008; Stahl 2013). Strictly, this
335would be measured in terms of the number of links that each learner creates using concepts
336that other learners added to the group map (Martinez-Maldonado et al. 2012c). Our approach
337goes a step further by including all the interactions a student performs on others’ objects,
338including moving them. The third question is:

3393) Can we distinguish more collaborative from less collaborative groups based on patterns
340involving traces of interaction of students with others’ objects?
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341We also explored the strategies followed by different groups to access individual
342learners’ representations of knowledge inspired by the studies on mutual awareness by
343having access to individual concept maps (Engelmann and Hesse 2010). The fourth
344question is:

3454) Can we distinguish more collaborative from less collaborative groups in terms of the
346actions that follow up the access to others’ knowledge structures?

347Participants and approach

348One approach that has proved successful to foster meaningful learning is to follow the
349construction of individual concept maps with a collaborative phase (Engelmann and Hesse
3502010; Novak 1995). This provides students with the opportunity to first think about their
351personal understanding and then focus on establishing common ground with others, nego-
352tiating meanings, and generating group knowledge. This strategy is supported by the theory
353of Group Cognition in which the process of knowledge building is modeled as a continuous
354loop of individual and collaborative periods of learning (Stahl 2006). Our approach builds
355on these approaches by providing both an individual and a shared space for group members
356to build concept maps.
357A total of 60 students enrolled in science courses participated in the study. An initial
358focus question was posed to the students: What types of food should we eat to have a
359balanced diet? Their goal was to create concept maps after studying the Australian Dietary
360Guidelines 2011 published by the National Health and Medical Research Council of
361Australia. Participants were organized in triads mainly grouped so they knew each other.
362Before the activity, students received instruction on concept mapping and were requested to
363draw a training concept map not related to the nutrition domain. Then, they were asked to
364read a one-page article based on the dietary guidelines and draw a concept map individually
365at a personal computer using CmapTools (Fig. 2, 1). After this, each triad was asked to build
366a concept map in the tabletop (Fig. 2, 2). This application was loaded with the individual
367maps previously built, allowing learners to have access to the concepts, linking words and
368an image of their maps. The group activity was structured in two phases: i) brainstorming,
369where students were only asked to add the most general concepts for their joint map
370without creating propositions (they were advised to dedicate the first 5 to 10 min for this);
371and ii) linking, where students could create propositions and add more concepts if needed
372(20–25 min.). They had 30 min for building individual maps and 30 min or more for the
373collaborative step. Finally, each learner was asked to draw an individual map again
374(Figs. 2 and 3).
375In this study we made a clear distinction between the brainstorming and linking phases
376since the learning goals, the duration and the range of students’ actions are different for both
377activities. Therefore, we describe the exploration and analysis of students’ data for each of
378them separately. Our research questions are aligned with this exploratory approach. Through
379these, we show that the same approach is applicable, and the results can be informative, for
380both classes of learning activity.

381Meaningful physical actions

382The tabletop application initially provides each learner with three tools: a list of
383concepts, an onscreen keyboard for editing phrases, and a resizable representation of
384their individual concept map. Learners can add concepts by simply selecting them from
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385a list that contains those they each used when building their individual map externally.
386They can add links by dragging a concept and dropping it on another concept; and
387delete elements by dropping them on one of the two black holes at the corners of the
388tabletop.
389All elements of the tabletop are colored according to the user who created the object.
390In this paper, we distinguished between the touch events captured by the tabletop
391hardware and what we call meaningful physical actions, which produce a change in
392the collaborative artifact. For example, to add a concept, a learner can search for the
393desired word from their list or decide to create a new concept. For simplification we
394associated all the touch events with only one higher-level action: adding a concept. The
395meaningful physical actions are illustrated in Fig. 3. These include adding, deleting,
396editing and moving concepts or linking words, and accessing individual maps on the
397tabletop. For the brainstorming phase the interface only allowed students to add concepts
398from their lists, create new concepts and open their individual concept maps. This
399includes the core task for this stage, creating propositions.

Fig. 3 Meaningful physical actions. Two individual maps are open on the tabletop (left). Editing a linking
word, adding a concept from a personal list and creating a link from the eight most used in learner’s map
(right, top to bottom)

1.Individual
concept mapping

2.Group concept mapping

CMapTools

Cmate/ 
Collaid

ADG

3.Individual
concept mapping

Phase 1: Brainstorming
Phase 2: Linking 

Fig. 2 Learning setting: 1) concept mapping based on the Australian Dietary Guidelines (ADG); 2) group
concept mapping; and 3) individual concept mapping
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400Quantitative assessment of quality of collaboration

401All 20 sessions in the tabletop were assessed quantitatively. The goal of this analysis was to
402differentiate the groups in terms of whether the quality of their collaboration was assessed as
403high or low. We applied the analysis method designed by Meier et al. (2007) which defines
404nine qualitative dimensions of collaboration that are rated quantitatively. These dimensions
405are: mutual understanding, dialogue management, information pooling, consensus reaching,
406task division, time management, technical coordination, reciprocal interaction, and individ-
407ual task orientation. The first 8 dimensions are group assessments and the last one includes
408individual assessments per student. Each dimension is quantified with a whole number
409ranging from −2 (very bad) to 2 (very good). We aggregated the numerical results of all
410dimensions to obtain a single score to categories the groups.
411An aggregated score below zero was treated as less collaborative (or low collaboration)
412and positive scores as more collaborative (or high collaboration). This gave 10 groups with
413negative scores (−10 to 0). The other 10 groups had scores from 5 to 19. The averages were −4
414(±3) (low collaboration) and 13 (±5), (more collaborative), where these differ by at least twice
415the standard deviation in each case. Two different raters tagged the sessions following the same
416rubrics as (Meier et al. 2007). Inter-rater reliability was high (Cohen’s k = 0.80). This qualitative
417rating schemewas useful to generate a quantitative measure to distinguish the groups. However,
418it still has the limitation of requiring human judgment. There is ongoing research that aims to
419automate part of this assessment to offer a rating using a machine learning model, so making it
420possible to provide direct insights to teachers or perform analysis on the fly (Martinez-
421Maldonado et al. 2013).

422Preliminary analysis

423Before any pattern mining was undertaken, we explored the data to analyze if, by using
424simple statistics, it is possible to distinguish groups in terms of their extent of collaboration.
425First, we looked at the time that each group spent in each phase.
426Table 1 shows the time spent by both more collaborative and less collaborative groups to
427complete the activity. We can observe that the majority of more collaborative groups kept to
428the suggested time for each phase (5–10 and 20–25 min respectively). While the less
429collaborative groups had similar averages, they had higher deviations. Even though the
430differences are not statistically significant, this suggests that some groups spent either less or
431more time of the allocated time for both phases. The issue to address is whether quantitative
432data can provide insights of the strategies that lead these groups to be less collaborative.
433To further explore the dataset, we draw on previous work by Martinez-Maldonado et al.
434(2011b, 2012b), who modeled quantitative information of students working at a shared
435device, for three aspects of tabletop collaboration: physical interaction, verbal interactions,
436and the synergy between these two. We analyzed the brainstorming and linking phases
437separately as the range of actions and learning objectives were different. First, regarding the
438physical activity, we explored the cumulative interaction by each learner with other students’
439objects through the visualizations designed by Martinez-Maldonado et al. (2012b).

t1:1 Table 1Q10 Average time taken by
groups to complete each collabo-
rative phase

*Time in minutes

t1:2 More collaborative Less collaborative

t1:3 Phase 1 (brainstorming) 10′ (±3) 10′ (±7)

t1:4 Phase 2 (linking) 21′ (±2) 24′ (±9)
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440Figure 4 shows three examples of the visualizations, where the size of the circles indicates
441the number of touches by learner. The thickness of the lines linking the circles represents the
442amount of interaction between pairs of learners, in terms of actions on objects created by the
443other. The visualization in Figure 4-a corresponds to a group that behaved quite collabora-
444tively on this aspect. It shows three similar sized size circles, each linked to the other, with
445two lines, albeit each of various widths. Groups that are less collaborative groups on this
446dimension are illustrated in b and c, with different sized circles and, notably in c just one
447connection of the green using acting on objects of the yellow user.
448Additionally, it has been found that for tasks like ours that called for equal participation,
449groups in which learners participate asymmetrically sometimes indicate cases of social
450loafing or disengagement (Dillenbourg 1998). For this, we explored one indicator of
451symmetry that has been used to study collaboration in tabletops: the Gini coefficient
452(Harris et al. 2009). This is a measure that represents inequality with a single number
453between 0 and 1, where 0 is perfect symmetry and 1 total inequality. Previous work with
454tabletops has found that coefficients close to 0.5 can be associated with non equal activity
455(Martinez-Maldonado et al. 2012c). Table 2 summarizes the amount of physical activity in
456our triads, the interaction of learners’ with others’ objects and the symmetry.
457According to Table 2, for the brainstorming phase, all groups (both more and less
458collaborative) had similar levels of physical activity and high symmetry (>300 raw touches,
459gini coeff. 0.18). The main difference between Phase 1 and 2 was that in the linking phase,
460learners interacted more (and more unequally) with objects created by their peers. Overall,
461the level of action on others’ objects was 29 % for high groups and 25 % for low groups.
462For the symmetry of physical activity, the high groups, shifted to less symmetric (rising
463gini coeff. from 0.18 to 0.35) while the low groups were rather consistent, 0.18 to 0.20). In
464fact, learners in low groups appeared to show more equality in their physical activity,
465consistent with the trend reported in (Martinez-Maldonado et al. 2011b). Contrary to what
466the visualizations of Figure 4 suggest, we found that low groups had more signs of symmetry
467in the physical interaction with other’s objects (gini coeff. 0.2 for low and 0.36 for high
468groups). However, there were no significant differences that could distinguish groups as
469either more or less collaborative. Overall, these simple analyses provide a rather complex
470picture that makes it unclear how a group of learners, or their facilitator or teacher, might
471make use of these measures.
472Secondly, we explored simple indicators of speech that might provide hints of possible
473issues in group work. Table 3 shows that the more collaborative groups had higher levels of
474verbal activity. In Column 1, we see time spent speaking of 457 against 270 in Phase 1 and
475773 against 531 for Phase 2. For the number of utterances, in Column 3, there is a similar
476situation, with 138 against 91 in the brainstorming phase, 229 against 109 in the linking

Fig. 4 Graphs of interactions with others’ objects for (a) a collaborative group, b a group with a passive
student, and (c) a non-collaborative group
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478coeff. 0.19 against 0.34, then 0.19 and 0.30 for the linking phase). Even though the large
479standard deviations affect the analysis of significance, these indicators suggest trends that
480point to the potential value of deeper exploration at a lower level of granularity.
481Table 3 also shows the average values of what we call meaningful physical actions, which
482affect the size, shape or content of the group artifact. We observed no difference between low
483and high collaborators in the number of these actions for the brainstorming phase (114 and
484105 actions respectively) but some difference in the linking phase, where the less collabo-
485rative groups had more of these actions. Lastly, we also accounted for the number of times
486group members accessed their individual maps. The main difference was that the more
487collaborative groups always accessed their maps, while some of the low groups never
488opened a concept map (deviations equal to the average).
489We additionally explored the relationship between verbal and physical actions. Previous
490work by Martinez-Maldonado et al. (2011b, 2012b) suggested that the more collaborative
491groups had higher levels of symmetric speech and lower levels of physical actions when
492using a tabletop. They proposed a way to visualize this with a radar that showed the amount
493and symmetry of physical and verbal activity. The triangles in Fig. 5 depict the number of
494touches and amount of speech by each learner (red and blue respectively). Each small circle
495represents a student. The closer the corner of the triangle is to a circle, the more that a student
496was participating. An equilateral triangle means that learners participated equally. Figure 5
497shows the representations of three groups. Visualization a shows a collaborative group in
498which the 3 learners participated quite equally on both dimensions. Visualization b shows a
499disengaged learner from the activity (left lower red circle); and visualization c shows a
500learner who had a high level of physical activity but little verbal participation (also left lower
501red circle).

t2:1 Table 2 Average values of physical activity, interaction with others’ objects, and symmetry

t2:2 Collaboration Physical
activity
(touches)

Physical
activity
(symmetry)

Touches
on others’
objects

Touches on
others’ objects
(symmetry)

Touches on
others’ objects
(% all actions)

t2:3 Phase 1
(brainstorming)

Low 344 (±184) 0.18 (±0.1) 39 (±54) 0.63 (±0.3) 10 % (±10)

t2:4 High 320 (±120) 0.18 (±0.1) 32 (±25) 0.63 (±0.2) 9 % (±7)

t2:5 Phase 2
(linking)

Low 897 (±475) 0.20 (±0.1) 211 (±80) 0.20 (±0.1) 25 % (±6)

t2:6 High 740 (±120) 0.35(±0.1) 205 (±78) 0.36 (±0.2) 29 % (±11)

t3:1 Table 3 Average values of verbal activity, meaningful physical actions and number of accesses to individual
concept maps at the tabletop

t3:2 Collaboration Audio time
(seconds)

Audio time
(symmetry)

Utterances Meaningful
physical actions

Access to
individual
map

t3:3 Phase 1
(brainstorming)

Low 270 (±297) 0.34 (±0.19) 91 (±84) 105 (±65) 4 (±4)

t3:4 High 457 (±286) 0.19 (±0.20) 138 (±86) 114 (±53) 7 (±5)

t3:5 Phase 2 (linking) Low 531 (±519) 0.30 (±0.13) 109 (±176) 407 (±227) 7 (±7)

t3:6 High 773 (±366) 0.19 (±0.07) 229 (±106) 286 (±50) 8 (±3)

Meaningful physical actions = Actions that made an impact on the collaborative artefact only
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502Table 4 presents the analysis of the physical actions and how these were associated with
503verbal activity. First, we observed a weak trend in the less collaborative groups performing
504more physical actions without speech (Column 2, 20 % and 75 % of all actions for low
505compared with 13 % and 64 % for the high groups). By contrast, for actions accompanied by
506speech, we found that in all groups, individual learners tended to not to talk while
507performing physical actions (Columns 3 and 4).
508For the brainstorming phase just the 16 % of such actions were performed in high groups
509and 14 % in low groups. For the linking phase this proportion was even lower (below 10 %).
510For the case of physical actions where the speech was from another learner, we found a
511different situation. An average of 44 % of the actions by the more collaborative groups were
512performed while other students were speaking (29 % of actions for low groups). For the
513linking phase this difference was smaller though but still with some difference (25 % and
51417 % respectively).
515Overall, the measures of activity presented above, each aggregated in isolation at the end
516of the activity, were not indicators of significant difference between groups that were either
517more or less collaborative. These averaged values do not take account of additional fine
518grain information that can be exploited, like the order, authorship or the balance between
519verbal and physical actions. This suggests the need to integrate contextual information and
520multiple sources of information simultaneously. Next, we present our approach that includes
521such contextual information with the sequence of learners’ actions in order to explore
522patterns that can help to differentiate groups.

Fig. 5 Mixed radars of verbal (blue/light triangle) and physical (red/dark triangle) participation for (a) a
collaborative group, b a group with a passive student, and (c) a non-collaborative group

t4:1 Table 4 Average values of physical actions with no speech in parallel; and physical actions with speech in
parallel from the same student and other students

t4:2 Collaboration Actions
with no
speech

Actions
with no
speech
(% all
actions)

Actions
with speech
by the same
author

Actions with
speech by
the same
author
(% all
actions)

Actions
with speech
by other
author

Actions
with speech
by the same
author
(% all
actions)

t4:3 Phase 1
(brainstorming)

Low 76 (±61) 20 % (±8) 14 % (±13) 14 % (±9) 29 % (±22) 29 % (±16)

t4:4 High 52 (±44) 13 % (±12) 16 % (±12) 16 % (±9) 45 % (±35) 44 % (±20)

t4:5 Phase 2 (linking) Low 307 (±234) 75 % (±23) 29 % (±28) 8 % (±7) 70 % (±64) 17 % (±20)

t4:6 High 185 (±73) 64 % (±61) 29 % (±28) 10 % (±6) 77 % (±39) 25 % (±15)

Physical actions= Actions that made an impact on the collaborative artefact only

R. Martinez-Maldonado et al.

JrnlID 11412_ArtID 9184_Proof# 1 - 09/10/2013



U
N
C
O
R
R
EC
TE
D
PR
O
O
F

523Method: Data mining approach

524One of the data mining techniques that have been used to identify patterns that differentiate
525high from low achieving students is sequence pattern mining. We used this technique
526because it takes account of the order of the events in, rather than simply the accumulated
527statistical analysis in the previous section. For example, Perera et al. (2009) modeled key
528aspects of teamwork for groups working with an online project management system; the
529researchers defined alphabets to represent sequential events that had promise for
530distinguishing strong from weak groups. Martinez-Maldonado et al. (2011c) proposed a
531semi-supervised approach to extract sequential patterns of students’ activity at a pen-based
532tabletop and cluster similar patterns to link them with group strategies. Kinnebrew et al.
533(2012) presented a differential sequence mining method which automatically compares
534patterns that characterize high and low-achieving learners including contextual information
535of students’ actions. In this paper, we implemented a mixed technique that combined these
536three previous approaches as described in the next subsections.
537The raw data for each group initially consists of two long sequences of actions: evidence
538of verbal speech by each learner and identified touch actions. These are transformed into a
539list of meaningful actions and verbal utterances, which are defined as: item action =
540{ActionType, Resource, Author, Owner, Time, Duration}, where ActionType can be: Add
541(create a concept or link), Rem (delete), Mov (move), Chg (editing a concept or linking
542word), Open or Close (individual maps). Resources can be: Conc (concept), Link
543(proposition), Indmap (individual map) or Speech (utterance). Author is the learner who
544performed the action, Owner is the learner who created or owned the Resource, Time is the
545timestamp when the action occurred, and Duration is the time taken to complete the action.
546Multiple touches to perform a single action and interaction with menus were not included.
547The original filtered sequence obtained for each group had from 434 to 1467 physical
548actions and from 83 to 627 utterances.

549Data preparation and formatting

550Even though the content of each item action in its raw format may appear simple, the level of
551complexity of these data is actually high. Each student’s action is associated with rich
552contextual information obtained by interlacing the three sources of information: student’
553physical actions on the tabletop application, the identified speech participation and the status
554of the artifact.
555The enriched tabletop can capture not just the students’ actions, but it can also link these
556to whether students were talking whilst interacting with the interface or just talking without
557touching the table. Furthermore, in terms of the group artifact, student actions can have an
558impact on the knowledge represented in the concept map or their actions may just modify
559surface aspects of it. However, not all of this contextual data is relevant to the research
560questions. In fact, if all this rich contextual information were taken into account when
561extracting patterns, the information would be too detailed to find meaningful trends in the
562interaction.
563For example, whilst the authorship of learners’ actions seems likely to be important, the
564exact detail of who is doing what is not necessarily relevant: if the intention is to detect how
565often students take turns versus a single student performing a sequence of actions, we only
566need to know whether actions were performed by the same student or by different students.
567Suppose that in one group, there is a sequence of actions (A, A, B) performed by two
568students in the following order: student1-A, student2-A, student1-B. In a second group, a
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569similar sequence occurs but the authorship is different: student 3-A, student1-A, student3-B.
570Our encoding system must recognize this pattern to be found, regardless of which pairs of
571the students among 1, 2 and 3 are involved. Consider a second example, for the verbal
572participation: In one group, two students may perform the following sequence: student1-A
573and then student2–B. In parallel, a third student may be speaking: student3-utterance for 5 s.
574In this case, it is important to encode the sequence of events in a way that captures
575parallelism (e.g., speech and touch at the same time).
576We therefore designed several alphabets, to encode the raw item actions at the level of
577abstraction needed for each research question, so that relevant patterns could be discovered.
578Next, we describe the design of a number of alphabets to encode student actions into item
579actions that capture required contextual information.

580Alphabets to encode actions and contextual information

581Inspired by previous work on design of alphabets to mine group behaviors (Martinez-
582Maldonado et al. 2011c; Perera et al. 2009) and the suffix nomenclature proposed in
583(Kinnebrew et al. 2012), we designed four alphabets. Each is associated with one research
584question, to enable discovery of the relationship between physical actions, presence of
585speech, verbal responses, parallelism, ownership, concurrency and access to individual
586maps.
587We encode each action using the alphabets in Table 5. The coding for an action has one
588keyword from each level. The first two levels correspond to Resource and ActionType. Levels
5893 and 4 add contextual information. We perform three steps to apply the four alphabets:

590i) All actions that can be performed on the resources are coded with two keywords, from
591Levels 1 and 2;
592ii) All the utterances that did not happen in parallel with any touch actions are coded in the
593same sequence, with 2 keywords: Speech and Shrt or Full for utterances shorter or
594longer than u seconds respectively (u=2).
595iii) The keywords from Levels 3 and 4 are added to each action or utterance. These are
596different for each alphabet.

597Next, we present a detailed description of each alphabet focusing on the specific
598keywords that are added in the third encoding step.

599Alphabet 1 seeks to address the first question by exploring the interweaving of verbal
600and physical participation traces. First, it focuses on adding the contextual information
601about the speech that occurs in parallel with physical actions (Alphabet 1, Level 3).
602This includes the keywords: Sauthor, which represents that the learner was talking
603while performing an action; Sother, which means that another learner was speaking
604while the author was performing the action; and NoSpeech, which means that when the
605action was performed no learner spoke.

606607Alphabet 1 also considers the time, order and author of each action to explore if only one
608student was building the solution or if their work was more reciprocal (by working either
609concurrently or completely in parallel). This is represented by the keywords in Level 4,
610which include: Tsame, which means that the previous action was performed by the same
611author; Tother, when the previous action was performed by a different learner (consecutive
612actions with the keyword Tother may indicate concurrent work); and Tparallel, when the
613previous action was performed by a different learner less than one second earlier, which is
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614about the time for users to perceive immediateness (Nielsen 1993). Multiple and consecutive
615Move actions by the same learner were compressed aggregating the keyword Mult.
616Figure 6 shows an example of a set of eleven encoded item actions of one group. The
617graph shows three timelines for the physical actions and other three for the utterances
618performed by each learner. The sequence starts with an add concept action performed by
619U1 accompanied by an utterance of the same learner, encoded as follows: Conc-Add-
620Sauthor. Then, learner U3 adds another concept while the first learner is still talking:
621Conc-Add-Tother-Sother. U3 then adds a link while speaking: Link-Add-Tsame-Sauthor.
622Actions with no utterances in parallel have the keyword NoSpeech (e.g. item action 6).
623Utterances with no physical actions in parallel are encoded like item actions 4, 9, 10 and 11

t5:1 Table 5 Four alphabets. 1) Physical/verbal participation; 2) verbal participation; 3) physical action on others’
objects; and 4) access to individual maps. The keywords that characterize each alphabet are highlighted in
bold letters

t5:2 Alphabet 1: Physical-Verbal participation Alphabet 1: Verbal participation

t5:3 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3

t5:4 Link L,CAdd/Rem/Chg NoSpeech Tsame Link L,CAdd/Rem/Chg NoSpeech

t5:5 Cone Mov/Mult Sauthor Tother Conc Mov/Mult Sauthor

t5:6 Indmap IOpen/Close Sother Tparallel Indmap IOpen/Close Sother

t5:7 Speech Shrt/Full Speech Shrt/Full Start

t5:8 Resp

t5:9 Assen

t5:10 Alphabet 3: Touches on other objects Alphabet 4: Access to individual maps

t5:11 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4

t5:12 Obj L,CAdd/Rem/Chg NoSpeech Owner Link L,CAdd/Rem/Chg NoSpeech IPers/NoPers

t5:13 Mov/Mult Sauthor Difowner Conc Mov/Mult Sauthor

t5:14 IOpen/Close Sother Indmap IOpen/Close Sother

t5:15 Speech Shrt/Full Start

t5:16 Resp

t5:17 Assen

I Only applicable for Individual map objects (Indmap)
L,C Only applicable for Concepts and Links (Conc, Link)

Fig. 6Q9 Example of an excerpt of a group’s events using alphabets 1 and 2. Vertical arrows associate each
event with the resulting encoded item actions
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624(Speech-Shrt/Full). Item action 8 illustrates a case where two physical actions were per-
625formed in parallel (Tparallel).

626Alphabet 2 focuses on the detailed description of the verbal participation in context with
627the physical actions. Following the same rationale described above, this alphabet
628introduces information about the length, order and authorship of verbal utterances
629where there are no physical actions in parallel. Figure 6 shows an example of the
630encoding of the same actions for Alphabet 2. It introduces three keywords (Table 5,
631Alphabet 2, Level 3). These are: Start (e.g. Fig. 6, item action 9), when a utterance has
632no other utterance immediately before it; Resp (response), when a utterance immedi-
633ately follows a previous utterance by another learner (e.g. item actions 4 and 11); and
634Assen (assenting), for short utterances (1 to 2 s long) that occur while another learner
635speaks (e.g., item action 10). We used these rules to automatically code all the
636utterances. We compared this rule-based tagging with a human tagging in a 10 % of
637the dataset and we found 76 % of agreement in identifying learners’ verbal responses.
638The alphabet also keeps the keywords associated with speech to encode physical
639actions (NoSpeech, Sauthor and Sother).
640Alphabet 3 captures the interaction of students with others’ objects. This alphabet
641considers contextual information about the actions that are performed by learners, either
642on the objects they initially created, or the ones created by others. This is achieved by
643the keywords Owner and Difowner respectively (Table 5, Alphabet 3, Level 4). The
644alphabet also keeps the keywords associated with speech to encode physical actions
645(NoSpeech, Sauthor and Sother), but it does not include independent utterances. To
646keep the alphabets as simple as possible but, at the same time, to capture the essential
647aspects of interactivity on others students’ objects, this alphabet does not differentiate
648among types of objects (only 1 keyword Obj for Level 1).
649Alphabet 4 targets the research question that explores the influence of the access to
650knowledge structures. This alphabet keeps the keywords associated with speech in
651Level 3 as in Alphabet 2, and adds information provided by the keywords Pers and
652NoPers in Level 4. Pers is associated to actions performed on concepts or links that
653were contained in a personal/individual map while this is being displayed on the
654tabletop (as in Fig. 3, left) or immediately before. Nopers corresponds to the rest of
655the actions on concepts and links, those that are not in any individual map displayed on
656the tabletop. The objective of this alphabet is to find possible differences in the actions
657performed after learners open their individual maps (Indmap).

658The algorithm: Differential sequence mining

659As a result of encoding the groups’ actions, according to the four alphabets described above,
660we obtained four datasets of encoded item actions with two sub-sets of data each. Each sub-
661set contains 10 long sequences of item actions for either a high or low collaboration groups.
662In order to extract patterns of activity we applied the differential sequence mining technique
663(DSM) developed by Kinnebrew et al. (2012), which looks for sequential patterns that
664differentiate two datasets.
665A sequential pattern is a consecutive or non consecutive ordered sub-set of a sequence of
666events that is considered frequent when it meets a minimum support criteria (Jiang and
667Hamilton 2003). For the DSM technique this is called sequence-support (s-support) that
668corresponds to the number of sequences in which the pattern occurs, regardless of how
669frequently it repeats within each sequence. We set the minimum threshold to consider a
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670pattern as frequent if this was present in at least half of the sequences (s-support = 0.5)
671following previous work by Kinnebrew et al. (2012). The algorithm also calculates consec-
672utive and repeated patterns within the dataset of sequences. This is called instance support (i-
673support). We set the maximum error threshold to 1 to allow the matching of patterns with
674sub-sequences if there was an edit distance of 0 (perfect match) or 1 (one different action in
675the sub-sequence) between them. This has the impact of allowing a larger number of
676sequences to be considered as differential even if the matching is not perfect. This has
677proved effective in matching similar sequences of actions in learning environments
678(Kinnebrew et al. 2012; Martinez-Maldonado et al. 2011c). The output of this algorithm is
679a list of frequent patterns that meet the minimum support in each dataset and that distinguish
680more collaborative from less collaborative groups (p<0.1) also following previous work by
681Kinnebrew et al. (2012). Next, we present the results of running the algorithm for each
682research question.

683Results

684Question 1: Can we distinguish more collaborative from less collaborative groups by the
685interwoven stream of students’ verbal and physical participation? After applying the DSM
686algorithm on Alphabet 1, we selected the patterns whose i-support distinguished high from
687low groups with a confidence of at least 90 % (p<=0.10) and that were composed of at least
688two item actions (e.g. {Conc-Add-Tother-Sother} > {Speech-Shrt}).

689We obtained 261 differential patterns. Table 6 shows the top-4 most differential patterns that
690were found in each sub-set for each phase. For the brainstorming phase, the patterns A, B, C,
691and D are very similar. All are patterns where students added (Add) and arranged (Mov)
692concepts without speaking (NoSpeech) and with some degree of parallelism and concurren-
693cy (Tparallel and Tother keywords respectively; found in A, B and C). By contrast, the more
694collaborative groups displayed a different strategy by interleaving periods of just verbal
695activity (Speech) with physical actions that were accompanied by other students’ talk
696(Sother in patterns E, F, G and H).
697To summarize the rest of the patterns that were found, Table 7 shows the frequency of
698appearance of keywords in patterns that met the differential criteria (p<=0.1). Confirming
699the trends suggested by the examples (Table 6), for brainstorming, the main difference was
700that high collaboration groups had more patterns in two main classes: ones with speech and
701no actions in parallel; ones with speech while other students performed actions (Speech and
702Sother appeared in 93 % and 43 % of the frequent sequences for the high collaboration
703groups against 50 % and 18 % of the less collaborative groups).
704For the linking phase, a similar trend remained. The low collaboration groups had an
705increased presence of parallelism in their actions (Tparallel = 36 % for low against 3 % for
706high groups) as in the patterns I, K and L. Additionally, more than 65 % of the low
707collaboration groups’ actions were not accompanied by speech (NoSpeech >60 % for low
708and <10 % for high groups). High collaboration groups showed patterns of sequenced
709speech in the linking phase (patterns O and P).
710This alphabet enabled us to discover that learners tend to not talk while touching the
711tabletop (Sauthor keyword is not present in the top patterns of Table 6, and in Table 7, the
712second last column (Sauthor) shows very low occurrence). There is evidence that a strategy
713followed by the more collaborative groups involved maintaining high levels of both speech
714levels and turn taking, accompanied by some physical actions, (Table 6, pattern P) and
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715keeping parallelism low. By contrast, the less collaborative groups had higher levels of
716physical activity with just a few unchained verbal interventions (see patterns J and L).

717Question 2: Can we distinguish more collaborative from less collaborative groups by
718extracting patterns of interaction based on just students’ verbal participation? Pattern P
719in Table 6 exemplifies the patterns that need deeper exploration analysis (sequenced
720utterances). Alphabet 2 was designed to provide more information for these verbal patterns.
721We obtained 225 differential patterns using Alphabet 2.

722Table 8 shows that most of the less collaborative groups’ sequences include actions
723performed on concepts and links with no speech in parallel both in brainstorming (patterns A
724to D) and even more frequently in the linking phase (patterns J, K and L). Additionally,
725patterns show that some utterances were not followed by any response (patterns A, C, D and
726I with keyword Speech-Start).
727By contrast, high collaboration groups tended to combine physical actions performed
728with speech from the same author or other learners (Sauthor-Sother); and sequences of
729utterances that can be associated with conversation patterns (patterns G and M). Another
730trend found is the keyword Start followed by a Response, or at least some verbal reaction in
731both phases of the activity (patterns E, F, N and O). Pattern H shows that in the brainstorm-
732ing phase, these students tend to open their individual maps and follow this action with long
733speech activity. A similar pattern in these high collaboration groups was found for the
734linking phase, with the difference that, the speech was accompanied by physical actions (see
735pattern P). It is not clear how they interacted with these individual maps hence the need of
736further exploration that is formulated in our Research Question 4.
737Table 9 shows the proportion of keywords in the rest of the patterns that met the
738differential criteria. The presence of verbal utterances, and especially, responses to other
739students, distinguished high from less collaborative groups in both phases (60 % and 45 % of
740the patterns in high groups had at least one responding utterance (Resp) respectively, in
741contrast to just 12 % and 8 % of patterns for the corresponding phases in the low groups).
742Short assenting verbal utterances by learners, while another learner was speaking, were more
743common in more collaborative groups (Assen=25 % for high and 13 % for low collabora-
744tion). This confirms the differences suggested in the examples described above.

745Question 3: Can we distinguish more collaborative from less collaborative groups based on
746patterns involving traces of interaction of students with others’ objects? After running the
747DSM algorithm using Alphabet 3 we obtained a total of 174 patterns. Table 10 presents the
748top differential patterns. It shows that the main distinction, for ownership and interaction,
749was not between high and low collaborative groups but between phases.

t7:1 Table 7 Proportions of keywords in frequent patterns by using Alphabet 1

t7:2 Collaboration Speech Tother Tsame Tparallel Nospeech Sauthor Sother

t7:3 Phase 1 (brainstorming) Low 50 % 50 % 25 % 18 % 62 % 0 % 18 %

t7:4 High 93 % 10 % 39 % 16 % 7 % 5 % 43 %

t7:5 Phase 2 (linking) Low 45 % 32 % 53 % 36 % 65 % 2 % 11 %

t7:6 High 92 % 4 % 31 % 3 % 10 % 0 % 24 %

p-value<=0.1

Q1
Computer-Supported Collaborative Learning
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F 750These patterns suggest that most of the groups performed actions on their own objects

751during the brainstorming, without interacting with others’ objects (no Difowner keyword in
752patterns from A to G). Only one of the top patterns shows that members of high collabo-
753ration groups also interacted with others’ objects to some extent (pattern H).
754In line with previous findings, the speech also marked a difference between high and low
755collaboration groups (patterns F, G and H). For the linking phase we can see a prevalence
756presence of actions performed on objects created by others (Difowner keyword in most of
757the patterns in the linking phase). The more collaborative groups presented strategies of
758interaction with others’ objects to a lesser degree, combining interaction of students on their
759own objects with speech by the same learner or others’.
760Table 11 shows the proportion of keywords for the rest of the patterns. Both high and low
761groups had fewer physical interaction with others’ elements during the brainstorming,
762similarly to the example patterns (14 % and 3 % for Difowner respectively). Indeed, the
763low collaborative groups always performed actions on their own objects (100 % for the
764keyword Owner).
765The above suggests that the strategy of splitting the work, without verbally communi-
766cating with other members, is what most distinguished the low collaborative groups in the
767brainstorming phase. For the linking phase the patterns of the low groups had a higher level of
768interaction with others’ objects (Difowner =83 %). However, patterns for the high collaboration
769group also had high rates of interaction with others’ objects (Difowner =62 %) in additional to
770patterns of speech.

771Question 4: Can we distinguish more collaborative from less collaborative groups in terms
772of the actions that follow the access to others’ knowledge structures? To investigate the
773actions learners performed in association with accessing learners’ maps, the analysis to
774address question 4 was different from the previous questions. Here, we only considered the
775actions that occurred while each individual concept map remained open. The statistics show
776a difference in the number of times groups’ accessed individual maps (145 for high and 102
777for low groups); therefore, we expect to find more patterns in the high collaboration groups.

778Table 12 shows the differential sequences for both groups. For the brainstorming phase,
779the less collaborative groups did not have any differential patterns meeting the support
780condition. By contrast, patterns for the more collaborative groups had increased levels of
781conversation after students accessed their individual maps (see patterns B, C and E). Patterns
782also show evidence that students took turns to open and explore individual maps one after
783the other (Open and Close events in patterns A, D and E). For the linking phase, the less
784collaborative groups had some patterns; however, unlike the dominant strategy followed by
785the more collaborative groups, these were mostly physical actions (Move actions) without
786verbal interaction after accessing individual maps (NoSpeech keyword in the patterns F to I).

t9:1 Table 9 Proportions of keywords in frequent patterns by using Alphabet 2

t9:2 Collaboration Speech Start Resp Assen Nospeech Sauthor Sother

t9:3 Phase 1 (brainstorming) Low 27 % 14 % 12 % 10 % 77 % 2 % 14 %

t9:4 High 83 % 43 % 60 % 25 % 10 % 6 % 43 %

t9:5 Phase 2 (linking) Low 12 % 7 % 8 % 1 % 94 % 2 % 8 %

t9:6 High 59 % 45 % 45 % 13 % 39 % 2 % 19 %

p<=0.1

Q1
Computer-Supported Collaborative Learning
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F 787In the linking phase, the higher collaboration groups continued using the individual maps as

788a tool to drive verbal communication (pattern K) and they opened more than one individual
789map at the same time, possibly for comparison (pattern M).
790Against our expectations, the length of the patterns we found was not enough to detect
791add events for concepts and links contained in those accessed individual maps. The keyword
792Pers was found in some patterns (H and L but this corresponded to move actions.

793Discussion and conclusions

794In this paper, we presented an approach to explore whether we could automatically distin-
795guish how and low collaboration groups, by exploiting the affordances of an enriched
796tabletop, with its learning environment that can keep track of students’ physical and verbal
797activity. Our empirical study showed considerable promise for obtaining indicators of
798collaborative work.
799We envisage that our work provides a foundation for creating a system with three
800components:

801& the data capture system to track and gather data of group activity;
802& the data analytics component, which is based on careful design of the alphabets that are
803a basis for producing group indicators via statistical and data mining techniques;
804& and the data presentation component that aims to present to teachers, researchers or
805students with visual information or knowledge about the collaborative process but which
806implementation goes beyond the scope of this paper.

807We have implemented the technological infrastructure to automatically and unobtrusively
808capture and integrate both verbal and physical students’ interactions in the tabletop
809(Martinez-Maldonado et al. 2011a). The analysis technique, based on the design of alpha-
810bets, combines the integration of verbal and physical interactions, with the use of sequence
811mining in order to find patterns that can distinguish groups that worked either more
812collaboratively or less collaboratively. This analysis proved effective in addressing our four
813research questions regarding patterns that differentiate groups in interactive tabletops.
814The statistical exploration of several indicators of interaction suggested that there were
815differences in groups’ interactions based on their level of collaboration. However, such
816aggregating information at the end of the group activity has proven to have serious limitations.
817First, the statistical differences between the measures for the high or low collaboration groups
818were not significant. So they were not powerful enough to capture the differences. In addition,
819since they were only available at the end of the session, they would not be a useful basis for
820informing a teacher of potential problem groups during a class.

t11:1 Table 11 Proportions of keywords in frequent patterns by using Alphabet 3

t11:2 Collaboration Owner Difowner NoSpeech Sauthor Sother

t11:3 Phase 1 (brainstorming) Low 100 % 3 % 94 % 1 % 1 %

t11:4 High 56 % 14 % 25 % 22 % 97 %

t11:5 Phase 2 nnlinking) Low 95 % 62 % 66 % 27 % 40 %

t11:6 High 97 % 83 % 99 % 0 % 4 %

p<=0.1
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821We then reported our approach to analyze students’ actions at a fine-grained level taking
822account of the order of actions and the interplay between the differentiated actions of each
823group member. The DSM technique, along with the four alphabets, adds contextual infor-
824mation to the sequence of actions and this enabled us to find patterns of verbal participation,
825parallelism, concurrency, linkage between verbal and physical actions, access to individual
826knowledge representations and students’ actions on others’ digital objects.
827First, by applying Alphabet 1, we discovered that the less collaborative groups had a
828predomination of patterns with physical interactions, high levels of physical concurrency
829and greater parallelism than the more collaborative groups. By contrast, the more collabo-
830rative groups had more verbal discussions in conjunction with physical actions, especially in
831the brainstorming phase. They also showed less concurrency in the physical dimension and
832less parallelism. This seems consistent with these students being more aware of their peers’
833actions and also making use of group discussions about the actions performed on the group
834map.
835Second, we explored in more detail the patterns of verbal participation through the
836Alphabet 2. One of the most interesting findings for the less collaborative groups was the
837detection of patterns where a learner spoke briefly without getting response from other
838students. This aspect of communication was also considered by Meier et al. (2007), under
839the dimension of mutual understanding. For groups to maintain mutual understanding, they
840needed to provide verbal feedback on their understanding in the form of an appropriate
841response, or by asking for clarification. In line with this, the more collaborative groups had
842higher rates of responses after other learners had spoken. These groups also had patterns of
843physical actions accompanied by speech by other learners. This is also consistent with these
844students being more aware of others’ actions and discussing each others’ actions.
845Third, the findings from applying Alphabet 3 to inspect interactions of students with
846others’ objects partly contradicted the analysis carried out by Martinez-Maldonado et al.
847(2012b). We found that the more collaborative groups had some interaction with others’
848objects in the brainstorming phase but in the linking phase, the less collaborative groups
849interacted more with others’ objects.
850Fourth, we explored the patterns of actions that occurred after students opened their
851individual concept maps to share them with others or to recall what they had done in the
852initial private mapping activity (Alphabet 4). We found evidence that suggests that the more
853collaborative groups accessed their individual maps to trigger discussion. Their actions
854showed that they either opened one map after another, or opened at least two concept maps
855simultaneously for possible comparison. For the less collaborative groups, our data does not
856really show how they used their individual maps. Contrary to what we had expected, the
857patterns found did not show the addition of concepts or propositions from those maps. This
858may be explored further by refining the alphabet.
859The patterns we discovered are important at multiple levels. First, they demonstrate that
860we have achieved our overall goal to exploit the digital footprints of learners in the tabletop.
861Importantly, this work provides a foundation for creating interfaces for bringing the collab-
862oration quality to the attention of the stakeholders. This includes learners in the groups. It has
863the potential to be particularly valuable for teachers who need to manage several groups in a
864classroom. It also provides researcher insights more broadly. Overall, the indicators of
865physical activity and verbal participation, produced by the implementation of our approach,
866are modest, if not limited, when compared with a full qualitative analysis of the utterances
867that can be carried out by an expert human observer. However, we argue that our study
868provides evidence that our approach can serve as a basis for a further development of
869automatic supporting systems for students or monitoring tools for their teachers. We
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870designed each alphabet to correspond to the elements of a specific research question and
871therefore, each provides different information. This range of insights about collaboration
872cannot be obtained through a single alphabet that simply aggregates all the keywords. This
873would only lead to very long item actions. It would be harder to interpret, and more difficult
874for the algorithm to discover patterns, given the higher variability of contextual information
875that would have to be analyzed at once. The formulation of other questions requires
876different, new alphabets. The current work provides as basis for creating these.
877Finally, the approach itself can serve as a basis for the design of interactive tabletop
878systems for collaborative learning, enabling a new level of support. We envisage systems
879that can capture, analyze and present students’ information in order to enhance awareness for
880teachers, researchers or back to the students themselves. Real time visualizations of the
881group process can be designed for the teacher, either exclusively or shared with the students.
882For example patterns found can be used as a benchmark to compare against new groups’
883patterns. If we detect patterns associated with non collaborative strategies, the system can
884trigger an alarm in real time to help teachers to enhance their awareness and possibly help
885them make more informed decisions about when to intervene with particular groups.

886

887
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