Supporting synchronous collaborative learning: A generic, multi-dimensional model

Jacques Lonchamp

Received: 00 Month 0000 / Revised: 00 Month 0000

Abstract Future CSCL technologies are described by the community as flexible, 12
tailorable, negotiable, and appropriate for various collaborative settings, conditions 13
and contexts. This paper describes the key design issues of a generic synchronous 14
collaborative learning environment, called Omega+. In this approach, model-based 15
generalizing is applied to the four dimensions of collaborative learning: the 16situation, the interaction, the process, and the way of monitoring individual and
group performance. These four aspects are explicitly specified in a set of models that 1817
serve as parameters for the generic environment. This opens the possibility of 19
combining many structuring/scaffolding techniques that have been proposed in 20
isolation in the CSCL literature. The paper also emphasizes the specificities and 21
difficulties of evaluating a comprehensive generic support approach. Experimental 22
evaluations conducted by system designers generally isolate the effects of a 23
particular design feature on learning. This kind of evaluation can hardly 24
demonstrate the usefulness of a generic model at the global level and the feasibility 25
of system customization by non-specialist teachers. To address these difficulties, 26
Omega+ is integrated into a larger collaborative web platform dedicated to CSCL 27
practice, evaluation (by collecting anonymized logs), and dissemination (by
supporting the technical and pedagogical development of teachers). 29
Keywords CSCL•Synchronous learning• Model-based genericity \cdot 30
Interaction model•Process model•Artifact model•Effect model•Evaluation • 31
Dissemination32
Introduction 34
Computer-Supported Collaborative Learning (CSCL) aims at producing tools and 35
environments for supporting collaborative learning, developing our understanding 36
of learning processes, and finding the best ways to implement new approaches and 37
tools into actual educational systems (Dimitracopoulou, 2005). Despite the 38

[^0]
AUTHOR QUERY

AUTHOR PLEASE ANSWER QUERY.

Q1. Please provide history dates.
production of an impressive number of tools and environments by the CSCL community during its first decade, CSCL adoption remains slow and challenging when compared to the dissemination of more classical e-learning environments that support instructionalist pedagogy (Haatainen \& Korhonen, 2002).

Our analysis of synchronous CSCL systems in Section 2 highlights one of the possible reasons for this problem: most existing systems suffer from restricted applicability (limiting re-use), in the sense that they are characterized by very specific situations, particular forms of interaction and specific learning processes. So far, researchers have focused primarily on the most important issues of collaborative learning in isolation and have proposed and evaluated highly specialized systems. Conversely, future mature CSCL technologies are described by the community as richer and appropriate for various collaborative settings, conditions and contexts (Dimitracopoulou, 2005), reconfigurable, adaptive, offering collections of affordances and flexible forms of guidance (Suthers, 2005), and very flexible and tailorable (Lipponen, 2002). Our analysis of synchronous CSCL systems shows the beginning of a trend towards systems with a larger applicability and flexibility during the last 5 years. Our aim is to go one step further in that direction by providing a generic environment, called Omega+, that is not tightly tied to some specific usage situation, learning process or knowledge type. Teachers can fine tune this generic environment to meet their specific requirements and pedagogical strategies. The "irreducible kernel" corresponds to a regular chat tool while richer configurations support flexible combinations of facilities for structured textual communication, scripted collaboration, and collaborative construction and manipulation of shared artifacts. In this introduction we briefly discuss our choices from three points of view: architectural, theoretical, and evaluative.

From the architectural viewpoint, neither monolithic integrated environments that include a large and flat collection of predefined mechanisms in a 'Swiss army knife' fashion, nor loosely integrated tools at the presentation level can realistically meet the requirements for larger applicability and flexibility. Component-oriented solutions, where each component adheres to a common specification and implements a given functionality that can be composed with others, could be more effective. We have chosen a different approach, however, called model-based genericity, in which the system behavior depends of the interpretation of some explicit model. We chose this approach because this solution provides finer grain customization capabilities than the component-based approach. IMS Learning Design (LD) players, such as the RELOAD LD player (http://www.reload.ac.uk/ ldplayer.html) and Edubox LD player (Tattersall, Vogten, \& Hermans, 2005), are well-known examples of model-based generic systems in the e-learning field. IMS LD is able to describe units of learning based on different theories and models of learning together with the learning objects used, and can be adjusted to personal needs. The generic player can scaffold the learning process in accordance with the IMS LD model currently loaded. A frequent drawback of model-based genericity is the overwhelming complexity of the meta-model, which defines all the concept types of the modeling language and, as a consequence, the complexity of models defining possible behaviors for the system. The conceptual model of IMS LD is a good example, which includes more than 40 concept and relationship types, while lacking adequate elements for modeling collaborative activities (Miao, Hoeksema, Hoppe, \& Harrer, 2005; Hernandez, Asensio, \& Dimitriadis, 2004). Such complexity makes model engineering a challenge for teachers who usually are not
experts in computer science specification. Reuse of large models is also problematic

88
openers. As a complement to such definitional malleability, tutors and students needparticipating in the defining of models, and at execution time by adapting the system
while tutoring learning processes. In this perspective, many questions can only be answered by using the environment in a variety of real-life settings: Is modeling doable by teachers? What percentages of teachers try to customize library models? Which models are chosen in the library? How and which dynamic malleability capabilities are used by tutors and learners? Our environment, Omega+, is a followup of a previous and more restricted tool called Omega Chat, which provided only process and protocol-oriented genericity (Lonchamp, 2005). The evaluation strategy for Omega Chat was to deliver the tool as an open-source product and to wait for feedback from users. Download statistics suggest there were more than a hundred downloads in 12 months from Sourceforge repository (http://omegachat. sourceforge.net). But most feedback messages were from developers raising technical issues-how to integrate the tool within their own systems, for instance-and not from end users. Our new strategy for obtaining more feedback and for answering usage questions is to provide end users with collaborative web platforms dedicated to CSCL practice, evaluation and dissemination. We have developed such a platform around Omega+ for a virtual community of teachers, students, and CSCL researchers who (1) execute model-driven collaborative learning processes; (2) design and develop the associated models; (3) analyze past activities and (4) cooperate through community tools like forums, mailing lists, wikis, issue trackers and document repositories. Anonymized logs will be collected for all experiments performed through these platforms. Section 5 summarizes this technological support dedicated to CSCL practice, evaluation and dissemination. Finally, software developers are also important stakeholders. In some circumstances programmatic extensions to the generic environment cannot be avoided. Section 4 discusses "developmental malleability" and illustrates how some aspects of the Omega+ architecture help software developers to perform their task more efficiently.

The rest of the paper is organized as follows. Section 2 analyzes a representative sample of synchronous CSCL systems and emphasizes the recent trend towards systems with larger applicability and flexibility. Section 3 presents the key design issues of Omega+, our multi-dimensional generic environment. Section 4 discusses the approach and shows that definitional malleability provided by the approach is not sufficient and has to be complemented by operational and developmental malleability. Finally, Section 5 describes the collaborative web platform for supporting both Omega+ usage analysis and, more generally, CSCL dissemination far beyond the small kernel of early adopters.

A survey of synchronous CSCL systems

Classifications

Researchers have proposed different taxonomies of synchronous collaborative learning systems. One is based on the kind of collaborative activities that they each support. Dimitracopoulou (2005), distinguishes between text-production oriented systems and action-oriented collaborative systems, and proposes a new mixed category of richer collaborative learning environments. Another classification, based on the kind of feedback provided to users (Jermann, Soller, \& Muehlenbrock, 2001), distinguishes between mirroring systems, which display basic actions to collaborators, monitoring systems, which represent the state of interaction via a set of key
indicators, and guiding systems, which offer advice or guidance based on an 231
automatic interpretation of those indicators. Our own taxonomy is complementary 232
with the two previous ones and distinguishes between simple tools/environments and 233
generic model-centered systems (i.e., using explicit models as parameters). In the 234
next subsection we apply these three characterizations to a representative sample of 235
synchronous CSCL systems that are frequently mentioned in the CSCL literature. 236
Synchronous CSCL systems analysis 237
Table 1 roughly preserves the chronology of the development of chat systems. Each 238
line summarizes the main characteristics of a system in terms of the pedagogical 239
situation considered, the provided interaction means, and the main questions 240
evaluated by its designers. 241
In the first period, prior to the year 2000, most chat systems were simple tools, 242
designed around very specific predefined situations (e.g., Covis, Coler, C-Chene, 243
Comet, Algebra-Jam) and particular forms of interaction and processes (e.g., Dialab, 244
Belvedere, Group Leader Tutor, Better Blether). Most of them are mirroring 245
systems. The small number of advising systems were domain-specific (e.g., Coler, 246Group Leader Tutor).247
In the second period of development during the five last years, different kinds of 248
genericity appeared, mainly for defining the kind of artifact that is collaboratively 249manipulated (e.g., Models Creator, Modeling Spaces, Cool Modes, Dunes, Co-Lab),250
and less frequently the interaction dimension (e.g., ProChat, Learning Protocol, 251
ACT) and the process dimension (e.g., LeadLine). In most cases, modeling does not 252
require programming skills. However, in Cool Modes for instance, specifying artifact 253
operational semantics requires that ad hoc Java classes be written and linked to the 254
declarative artifact model. In all cases, a single generic dimension is considered. 255
The next section describes our approach, based on multi-dimensional genericity 256(situation, interaction, process, monitoring), that could constitute another steptowards more tailorable and flexible systems.257258
Omega+ design approach 259
A Chat-oriented kernel 260
As demonstrated in the previous section, most CSCL systems include a regular or 261
structured chat either as a core functionality (for text-production oriented systems) 262
or as a complementary communication channel (for action-oriented systems). 263
Omega+ environment is built around a chat-oriented kernel, providing the usual 264
functionalities found in regular chat tools with multiple rooms and private channels 265
(whispering). 266
We start by recalling some well-known deficiencies and limitations of regular 267
chat tools (Garcia \& Jacobs, 1999; O’Neil \& Martin, 2003) because the structural 268
extensions in the process and protocol dimensions of Omega+, which will be 269
described in the next two sections, try to bring solutions to these problems. The most 270
important one is the lack of control over turn positioning. Since turns can be posted 271
simultaneously by a number of participants, there is no guarantee that a response to 272
a question, for example, will appear directly after the question that elicited it. 273
Instead, other turns may appear between a question and its response, causing 274
confusion about threading. The consequence is a preference for short turns so that275
the response might be closer to the question, if sent quickly. Standard chats are 276
not places where carefully constructed messages can be sent. Lack of visibility of 277
turns-in-progress (chat systems only transmit turns when they are completed 278[ENTER key]) and lack of visibility of listening-in-progress (participants do notreceive moment-by-moment information about the reaction of those who arelistening to them), are other examples of well-known issues. Many other problemsare documented in the literature but we restrict the discussion here to coordinationissues.279280281
A number of research prototypes address these problems by providing nonstandard interfaces, such as threaded interfaces (Smith, Cadiz, \& Burkhalter, 2000), 2D/3D graphical interfaces (Kurlander, Skelly, \& Salesin, 1996; Viegas \& Donath, 1999), and streaming interfaces (Vronay, Smith, \& Drucker, 1999). It has been observed that each solution can solve one specific problem but can often create new difficulties for end users in other domains (Vronay et al., 1999).
Other research approaches extend traditional chat tools with additional awareness mechanisms, each addressing a specific issue: turns-in-progress visualization, social presence via animated face icons representing facial expression, hand raising (Fadel \& Nazareth, 2004), and social proxy (Bradner, Kellog, \& Erickson, 1999). Some of them are now integrated into commercial tools, like the textual "someone is typing" indicator. However, in our opinion, such additional awareness mechanisms cannot be accumulated in a "Swiss army knife" fashion, but should be selectively available within consistent interaction styles for avoiding an excessive level of cognitive load. For instance, in a round-robin interaction, user activity, turns-inprogress, and hand raising cues are obviously of little value.283
Finally, the last approach considers that all these deficiencies are consequences of the unstructured nature of standard chat conversations. By constraining the turntaking (as in moderated chat systems) and by dividing discussions into more focused sub-discussions, most coherence and coordination problems could be alleviated.
We think that educational settings strongly require such structuring capabilities for reasons that go beyond the aforementioned coordination issues. We have already discussed in the introduction section the interest of software that scaffolds learners in complex tasks. The next two sections discuss the structural extensions to the Omega+ chat kernel in the interaction and process dimensions.
A generic extension in the interaction dimension
The general idea is to scaffold productive interaction by encompassing interaction rules in the medium (Dillenbourg, 1999).
In a first approach, researchers have identified collections of conversational moves that they believe are necessary for an effective learning dialogue, and have implemented these moves as mandatory sentence openers (or complete utterances) in what are called "semi-structured interfaces." C-Chene, Better Blether, Smart Chat, and OXEnTCHE-Chat are examples of systems with a fixed set of sentence openers. ACT is an example of a generic solution with a customizable set of sentence openers and speech acts. The true efficiency of "such semi-structured chats" remains an open issue (Baker, 1997).
Table 1 Analysis of a representative sample of synchronous CSCL tools

System	Situation	Interaction	Evaluation
Dialab (Moore, 1993)	Argumentation and critical thinking for two players	Structured chat with sentence openers + dialog rules + turn taking (rigid logic-based dialogue game)	Text-based communication can lead to misunderstanding because non-verbal and paralinguistic cues are not available.
Covis (Pea, Edelson, \& Gomez, 1994)	Scientific inquiry in atmospheric and environmental sciences	Visualization tools + desktop video conferencing + application sharing	Qualitative and quantitative studies concerning students' attitudes, criteria for "good projects," communication technologies, communication bandwidth, visualization tools usage, teachers' perspectives.
Group Leader Tutor Aiken, 1996)	Problem solving discussion between two students	Structured chat (sentence openers)	Evaluating the students' co-operative attitudes before and after using the tool, and evaluating the students' academic achievements.
C-Chene (Baker \& Lund, 1996)	Energy chains modelling	Structured chat (sentence openers + turn taking)	Comparison of chat-box and structured interface interactions.
Belvedere (Suthers \& Jones, 1997) (Suthers \& Hundhausen, 2002)	Collaborative inquiry for a small group	Inquiry map (predefined discourse acts + evidential relations)	Impact of representation type $>$ (matrix, graph, text) on students' elaborations of their emerging knowledge.
Better Blether (Robertson, Good, \& Pain, 1998)	Group discussion for primary school	Structured chat (sentence openers)	Evaluation of BetterBlether as a communication tool, based on a conversational analysis, and comparison to a previous study of supervised and unsupervised groups.
Comet (Soller et al., 1999)	Software design problems (OMT)	Shared OMT Diagrammer + structured chat (sentence openers + speech acts)	Determining the effectiveness of knowledge sharing episodes.
Algebra-Jam (Singley, Singh, Fairweather,	Algebraic problem solving	Blackboard (goal tree) + topical chat with typed messages	Study of the flow of information that occurred between

Springer
\ddagger
teachers and students and the types
of mediation.
Effect of a structured script on the groups'
ability to achieve consensus and to make
better decisions.
Study of how students used and evaluated the
coach's advice.
Impact of alternative protocols of locking of the
common work surface in which the model is
built.

[^1]
Chat with an explicit collaboration
model
Scripted social
interaction
Entity-relationship
modelling
Open modelling
system (building models out of
primitive objects + qualitative and
semi quantitative relations)
Collaborative writing
Collaborative text-
based discourse
Collaborative
argument grapher
Generic system for
graphical modelling
and discussion

t1.10	Farrell, \& Swerling, 2000)
t1.11 ProChat (Whitehead \&	
Stotts, 2000)	
Lead Line (Farnham et al., 2000)	
t1.12	
	Coler (Constantino-
	Suthers, 2001)
	Models Creator v3 (Fidas,
t1.14	Dimitracopoulou, 2002)
	Modelling Space (Avouris et al., 2004)
	Cosar (Jaspers, Erkens, \& Kanselaar, 2001)
t1.15	
	Learning Protocol (Pfister \& Mühlpfordt, 2002)
t1.16	
$\begin{aligned} & \text { Drew (Baker et al., } \\ & \text { t1.17 2003) } \end{aligned}$	
Cool Modes (Pinkwart, 节 2003)	

Table 1 (continued)

号	System	Situation	Interaction	Evaluation
t1.18			functionality (basic plug-ins for structured discourse,...) -XML models	for it.
$\mathrm{t} 1.19$	Dunes (Börding et al., 2003)	Argumentation based learning	Shared argumentative maps, chat + off line analysis tool	-
t1.20	Smart Chat (Siebra, Christ, Queiroz, Tedesco, \& Barros, 2004)	Intelligent environment for collaborative discussions	Structured chat + argumentation model	-
t1.21	Bubble Chat (Münzer \& Xiao, 2004)	Process-aware chat for professional training	Chat with process support + learning instructions \& materials	Feedback data indicated a low acceptance of the software tool. Participants evaluated the process control as being restrictive.
$\mathrm{t} 1.22$	OXEnTCHE-Chat (Vieira et al., 2004)	Chat that monitors interaction for teachers and learners	Structured chat + automatic dialogue classifier for on-line feedback + chatterbot agent (automatic dialog coordinator)	Qualitative evaluation of the tool's usability and the quality of the feedback provided
	Mediated Chat v1 to v5 (Pimentel et al., 2005)	On line course debates	Extended chat tools (with threads, hard-coded protocols, message queuing, latecomer management...)	Individual evaluation of each mechanism independently (threaded chat, predefined protocols, and message queuing)
t1.24	Co-Lab (van Joolingen et al., 2005)	Collaborative scientific discovery learning environment	Tools for model sketching, model specification (system dynamics), model testing, communication (chat), knowledge sharing	Specific studies concerning learners' general impressions, working patterns with minimal guidance, comparisons with face to face work, utility of process scaffolding.
t1.25	ACT (Gogoulou et al., 2005)	Generic structured chat with monitoring facilities	Generic chat with SST (scaffolding sentence templates), roles, monitoring through threaded view	Empirical study of the opinions of students concerning the usage of a predetermined set of SST. Qualitative study of customisation facilities.

In a second approach, often called "structured chats," the interaction follows complex protocols with typed messages, role assignment, and message sequencing (e.g., ProChat, LearningProtocol, Mediated Chat). These interaction protocols are either hard-coded, like in Mediated Chat ("unique contribution," "unique contributor," "circular floor passing," "mediated debate") or explicitly specified by the users with a protocol modeling language (e.g., ProChat, LearningProtocol). Some evaluations are positive (Pfister \& Mühlpfordt, 2002). Others emphasize a low impact of these protocols on chat confusion (Pimentel, Fuks, \& Lucena, 2005) and a low acceptance from end users (Münzer \& Xiao, 2004) in some circumstances.

None of these solutions are silver bullets, but they can play a positive role in some settings. Omega+ provides both kinds of genericity, as mutually exclusive solutions, corresponding to different levels of scaffolding. First, each time a room is instantiated, two additional structuring mechanisms are made available when they are compatible with the room definition:

- a customizable set of sentence openers
- an utterance numbering system that allows users toreference previously 335334
published messages.
Second, at room definition time, the designer can select predefined or user-defined 337
application-dependent interaction protocols. Each protocol definition includes a set 338
of roles, a set of typed messages (utterances), and a set of rules defining adjacency 339
pairs (Clark \& Schaefer, 1989): if a user playing the role A produces a message of 340
type X then any user (or the next user in a circle) playing the role B can continue 341
with a message of type Y. Application-specific protocols can be defined graphically 342
in a tree (or forest) form. The root(s) is (are) the role(s) that can start the discussion. 343
Leaves are actor types receiving a message type in a situation already described 344
somewhere in the graph. Figure 1 shows the Explanation protocol model defined in 345
Pfister and Mühlpfordt (2002) within the Omega+ generic editor when the user has 346
selected the "ProtocolModel" type and the "Explanation" protocol model. 347
At each moment, a participant using the protocol-driven chat (see Fig. 2) can only 348
select a type of message in accordance with his/her role and the protocol rules. 349
Figure 1 shows that the interaction always starts with a Tutor giving an explanation. 350
Jack is the Tutor in the example of Fig. 2. Then, any Learner can produce a Question, 351
an Explanation or a Comment. In the example, Mary gives a Comment. After a 352
Question from a Learner (Suzan in the example), a Tutor (Jack) can only answer with 353
an Explanation. It is the only move proposed by the chat client (Fig. 2). After the 354
Explanation, the model prescribes that the next move is from the next Learner in a 355
circular order (see the quantifier property visible in the tool tip of Fig. 1). In this 356
example, it would be Mary. As already specified in the tree, a Learner receiving an357Explanation from a Tutor can continue with a Question, an Explanation or a Comment.358

A generic extension in the process dimension
Explicit script models are commonplace in asynchronous CSCL systems. For

Fig. 1 A protocol model
linear sequence of phases. Some scripts are defined in an iterative way, but 364
from the student's point of view, they are run as a linear sequence. Each365
phase of the script specifies how students should collaborate and solve the 366
problem. This requires five attributes: the task that students have to perform, 367
the composition of the group, the way that the task is distributed within and 368
among groups, the mode of interaction and the timing of the phase. 369
Among synchronous CSCL systems, some tools include predefined hard-coded 371
processes and a few of them accept explicit script models as parameters (e.g., 372
Bubble Chat, Lead Line). 373
Omega+ supports process model-drivenexecution and provides process modeling 374
facilities. A process model, within a "structured room," defines a sequence of phase 375
types. We differentiate between "regular" and "split" phases. In a regular phase the 376
whole group of participants works in the same room. A split phase is a structured 377
phase comprising a set of sub-phases running in parallel. The group of participants is 378
divided into sub-groups working in different sub-rooms. Room Operators partici- 379

Fig. 2 The corresponding protocol-driven chat tool
pate in all sub-rooms. All sub-phases of a split phase start and terminate 380
simultaneously. Each phase type (regular or sub-phase) is characterized by a name, 381
a type (regular or split), an informal description, an interaction protocol type, and a 382
set of available tools (at most 3). Some protocol types are predefined ("open-floor," 383
"moderated open-floor," "circular floor passing," "single contribution," or "unique 384
contributor"), while others are application-specific (see Section 3.2). A library of 385
predefined process models is available for re-use at room definition time. 386
When a phase instance is created, the Room Operator: 387

- gives a name (by default the type name with an instance number), 388
- defines who is participating (if the phase has restricted participation) and the 389
binding of users to protocol-specific roles (e.g., who is the Moderator in a 390
moderated phase), 391
- gives some informal instructions, 392
- when it is compatible with the room type and useful, customizes all chat clients 393
with sentence openers and/or explicit referencing (see Section 3.2). 394

The execution of a process model is flexible. The simplest execution just follows the 396
predefined sequence by using the Next button. But Room Operators can also jump from one phase to another (e.g., skip a phase or iterate to a previous phase) by using the Jump button. In Fig. 2, Jack plays the application-dependent role of Tutor and the predefined role of Room Operator. So, the Next and Jump buttons for navigating in the process are visible in Jack's client. We will see later, in Section 4, that the process model structure can also evolve dynamically at execution time.

Figure 3 shows the Omega+ generic editor when the user has selected the "Process Model" type and the "Brainstorming" process model. This process model is just a sequence of three phase types: "Present" (where only the Room Operator can speak to describe the problem), "Propose" (where participants freely propose

Fig. 3 The Brainstorming process model
ideas) and "Evaluate" (where each participant must give a personal opinion about

A generic extension in the situation dimension
Sharing and commenting on resources and material is another basic functionality of many CSCL environments that often complements textual communication. Several recent systems offer generic means for defining these shared artifacts (e.g., Modeling Space, Cool Modes, Dunes).

Omega+ provides:
(1) different kinds of shared conceptual representations: text, drawing, image, and user-defined disciplinary representations, taking the form of graph-based notations; thanks to this last feature, the system can support ad hoc notations conforming to a variety of social and cultural norms;
(2) rooms with several editors for different representations (e.g., a shared text editor for writing down preliminary ideas, a shared whiteboard for informal sketching, and a specialized diagrammer for formalizing a design);

415
416
417
418
419 different views);
(4) import/export capabilities from one editor to another (e.g., exporting a text or a domain-specific graph into a whiteboard for freehand commenting).

The complete specification of a disciplinary graph-based representation should include the visual representation of nodes and edges, integrity conditions restricting the possible structures, and the operational semantics attached to the graph. Most generic systems only consider the first two aspects (e.g., Modeling Spaces, Dunes). In Cool Modes, all aspects are defined in XML "Reference Frame" files. However, the treatment of rules that contain domain specific operational semantics is implemented through a link to a dedicated Java class (Pinkwart, 2003). Our choice is to keep the same kind of visual specification for artifact meta-models as for protocol and process models, excluding complex operational semantics specification. The idea is to support with the same generic visual editor the collaborative construction of new formalisms by teachers, and the collaborative construction of artifacts based on these formalisms by students. If some specific behavior is needed we suggest using a display sharing external dedicated tools or to build ad hoc rooms (see Section 3.6).

Figure 4 shows Omega+ generic editor when the user has selected the "Diagram Model" type and the "State Diagram" meta-model. Icons on the right part of the screen specify available node and edge types with their attributes (button icon for the tool palette of the generated state diagram editor, component icon of state diagram node types, color, line and arrow style of state diagram edge types). The graph on the right part of the screen shows which are the allowed connections between all these structural elements (start node to transition edge to state node; start node to transition edge to stop node; state node to transition edge to state node; state node to transition edge to stop node).

Fig. 4 An artifact model

Figure 5 shows the generic editor configured by the "State Diagram" meta-model. refinement of a node into a sub-graph (eighth and ninth buttons in the tool palette).

A generic extension in the effect monitoring dimension
According to Barros and Verdejo (2000), at a first level called the performance level,

Fig. 5 The corresponding state diagram editor
characterizing users' actions are computed. Monitoring (or meta-cognitive) systems
display information about what the desired behavior might look like alongside a visualization of the current state of these indicators. It is then up to the students or teachers to interpret the views and decide what actions (if any) to take. In advising/ guiding systems these attributes are automatically compared to the desired behavior by meta-cognitive agents.

In Omega+, the process of constructing high level visualizations from a set of predefined low-level variables is generic. An "effect model" describes the kind of results required for a specific learning process. An XML-based effect model file can produce several corresponding graphical views. An effect model specifies:

- general parameters, such as the time interval between measures for time series, - the characteristics of each visualization to display: name, informal description, type (bar chart, time series), value labels, and expressions defining how values are computed from the low-level predefined variables.

In the current version of Omega+, graphical visualizations are restricted to stacked bar charts computed for each user and stacked time series. Values that are displayed are simple arithmetical combinations of the predefined low-level variables. Richer operators (e.g., square root, mean, min/max, etc.) should be provided in future releases.
Visual modeling of artifacts comes to its limits when the specification of complex or
application-dependent behaviors is required. For teaching science, "computer modeling" has been recognized as an important approach (Spector, 2000) where students create their own executable external representations of a domain or subject. They can simulate the models they create and observe and draw conclusions based on the model output. In Omega+, we suggest to distinguish the collaborative design of the model by using a customized instance of the generic diagrammer and the animation of the model. For animating representations having standard operational semantics (like Petri Nets or System Dynamics) it is possible to use external dedicated tools through some application-sharing facility. For animating representations with a non-standard operational semantics, like in Model-It (Jackson, Stratford, Krajcik, \& Soloway, 1996), or for integrating different representations, like in SimQuest (Löhner et al., 2003), the development of ad hoc rooms cannot be avoided. As a demonstrative example of both cases, we have implemented two specific argumentation rooms by reusing the approach from the European SCALE project: the Drew graphical argumentation tool (Baker, Quignard, Lund, \& Séjourné, 2003), the Alex structured chat, and Alex-Drew integration. We do not describe here the rationale behind this approach but focus on the way ad hoc rooms can be constructed and integrated into Omega+. The graphical argumentation room is similar to the Drew argumentation tool: users directly manipulate graphical boxes and links. Students are able to express their opinions-"in favor" and "against"about any element of the argument graph. In order to highlight differences of opinion, and to focus discussion upon them, boxes in whichopposing opinions have been expressed appear in a "crushed" form (see Fig. 6). This exemplifies a complex behavior difficult to specify in a generic declarative way. The textual argumentation room is similar to Alex-Drew integration: the two optional functionalities of the Omega+ chat kernel-sentence openers and explicit references between messagesare used for textually creating and linking arguments, similar to the Alex structured chat. The system automatically translates each utterance into a non-editable graphical view similar to those manually constructed in the graphical argumentation room. This kind of complex representation integration is also very difficult to specify in a generic declarative approach. It is worth noting that large pieces of code, both at the kernel and interface levels, can be re-used when building ad hoc rooms. Omega+ allows the programmer to integrate these ad hoc rooms into every structured learning process, like any other kind of room.

Discussion

Definitional malleability
Omega+'s basic orientation is multi-dimensional genericity. The previous section
shows how most aspects of collaborative learning, i.e., the situation, the interaction, the process, and effects monitoring, are specified explicitly through a set of models

Fig. 6 A graphical argumentation room
ones: trade-offs between free and structured dialogue, trade-offs between restricted 527
collaboration protocols vs. free ones, trade-offs between self-regulation (through 528
meta-cognitive visualizations) and teacher support, trade-offs between parallel and 529
embedded representations and tools for dialogue. The environment can be fine 530
tuned for various different collaborative settings, conditions and contexts, by 531
including in the models a selected number of structural constraints statically, i.e., 532
before the beginning of the learning process: phase precedence rules, protocol rules, 533
ontologies of concept types in artifact models, ontologies of sentences openers, etc. 534
The multiplicity of models brings some obvious potential advantages. Each 535
(meta) model is simpler. Visual (graph-based) representations can favor involve- 536
ment of teachers who can also more easily browse libraries of predefined models. 537
On the other hand, this orientation also raises a number of questions because there 538
are many potential interactions across the four dimensions. We have seen that 539interaction models are contained in process models as attributes, and that each540
phase in the process model can include tools parameterized by different artifact 541
models. Figure 7 summarizes the overall logical configuration process of the generic 542
environment with all decisions made at definition and instantiation times. 543
Some interactions are more subtle, and the way they are managed in Omega+ 544
could be improved. Interactions between protocol models and artifact models raise 545
some issues, such as the impact of a circular (round robin) protocol on the access 546rights of shared artifacts (floor management of shared editors). Another example ofpossible improvement can be found when considering the above-mentioned trade-547548
off between parallel and embedded representations and tools for dialogue. 549
Embedded solutions directly attach comments on the artifact under discussion, 550
while parallel solutions use separated windows. Both solutions are available in 551
Omega+. First, model designers can add annotation node types within any artifact 552
model, the instances of which can be created and modified by end users (embedded 553
solution). The chat tool can also be used as the medium for commenting on the 554artifacts (parallel solution). In parallel solutions, explicit referencing is often555
proposed for reducing the distance between the object of the discussion and the 556
corresponding dialogue. Currently, Omega+ kernel provides two independent built- 557in facilities for explicit referencing:558

- explicit references between messages (through message numbering), 559
- explicit references between messages and graphical representations (through 560"graphical pointers"). The whiteboard and all graphical editors provide a
561
"pointer button." After this button has been clicked, an arrow with the user's 562
name and a sequence number follows the mouse pointer and is drawn when and 563
where the mouse is clicked (see Figs. 5 and 6). Chat productions can include 564
explicit references to these personalized and numbered pointers. 565
These two referencing facilities are managed independently. They could be 566
merged into some higher-level mechanism in the spirit of what is proposed in 567
Mühlpfordt and Wessner (2005), for instance. 568
Operational malleability569
Definitional malleability is not sufficient. Beside static flexibility, end-users need 570dynamic (run-time) flexibility, which we call operational malleability.571

Fig. 7 The main configuration decisions at definition and instantiation time

First, users playing the predefined Room Operator role can change the current
currently in execution (in this specific case, a new phase type has to be created and 577
the operator has to jump to a new instance of this new type). Dynamic evolution of 578
protocol and artifact models are expected to be less frequent than process model 579
evolutions, and no dedicated menus are provided. The Room Operator must use the 580
shared model editor in a model design room for creating new versions of these 581models, which can serve for changing the executing process model.582
Second, room operators can relax or sidestep most of the constraints that apply 583
when exceptional circumstances arise. The system is then in charge of making other 584
users aware of these punctual rule breakings. Here are some examples available 585
through contextual menus or buttons: 586

- skip a user during a circular (round robin) interaction protocol, 587
- kick a participant off for a given duration, 588
- jump to any another phase, before or after the current one, 589
- transfer the Room Operator role to any other room participant, 590
- transfer the Moderator role (predefined role in moderated rooms) to any other 591 592room participant.
Developmental malleability 594
Operational malleability concerns end-users, i.e., teachers and possibly students. 595
Another kind of malleability, developmental malleability, concerns tool developers. 596
The architecture of Omega+ aims at facilitating some evolutions of the implemen- 597
tation. Most properties are stored in XML files at three different levels. 598
- At a first level, the process meta-model, the protocol meta-model, the effect 599
meta-model, and the artifact meta-meta-model describe in each dimension how 600
the generic shared model editor (i.e., Omega+ design environment) has to be 601
configured: what are the available node types, their required attributes, their 602
visual properties; what are the available relation types, their connection 603
constraints, and their visual properties. 604
- At a second level, process models, protocol models, effect models and artifact 605
meta-models created with the Omega+ design environment are stored (e.g., the 606
Brainstorming process model of Fig. 3). The first three models serve as 607
parameters to the Omega+ execution environment, including the chat kernel 608
extended with a model-driven engine. Artifact meta-models (e.g., the State 609
Diagram artifact meta-model of Fig. 4) configure the generic shared model 610
editor for producing a customized diagrammer.611
At a third level, shared artifacts (e.g., the Escalator state diagram of Fig. 5) are 612
manipulated by students during the collaborative learning process with the 613
customized diagrammer. Thanks to the effect model, high level effect visualizations 614
can be displayed for end users. 615
As an example of implementation change, suppose that a developer wants to 616
distinguish between artifact node types that can be refined by students using the 617
diagrammer from artifact node types that cannot be refined. For implementing this 618
new feature, the first step is to create a Boolean property "canBeRefined" for nodes 619
in the artifact meta-meta-model at the first level. Then, the developer can give a 620
true or false value to this property for each type of node in the artifact meta-model 621
with the Omega+ design environment. Finally, a few lines of code within the

Evaluation issues

Our study of synchronous CSCL systems in Section 2 emphasizes how their impact
and effectiveness on learning is evaluated (Table 1). For simple tools of the first period (prior to the year 2000), most studies try to isolate the effects of the central design feature on learning: comparison of interactions using a regular chat interface and the dedicated structured chat interface for C-Chene (Baker \& Lund, 1996), evaluation of the impact of representation on students' elaborations of their emerging knowledge for Belvedere (Suthers \& Hundhausen, 2002), evaluation of Comet's analyzer of collaborative episodes (Soller, Linton, Goodman, \& Lesgold, 1999), evaluation and use of Coler's automatic coaching facility (ConstantinoGonzález \& Suthers, 2001), evaluation of the impact of alternative protocols for locking the shared work space in Modeling Space (Avouris, Komis, Margaritis, \& Fidas, 2004), etc. For the more complex and generic tools of the second period (during the five last years), different evaluation approaches have been proposed, but none of them is fully convincing. Many generic systems are evaluated through a single or a small number of pilot studiesusing specific models. Evaluations of Learning Protocol (Pfister \& Mühlpfordt, 2002), BubbleChat (Münzer \& Xiao, 2004), LeadLine (Farnham, Chesley, McGhee, Kawal, \& Landau, 2000) and ACT (Gogoulou, Gouli, Grigoriadou, \& Samarakou, 2005) are typical examples. This kind of approach fails to answer fundamental questions, such as those concerning the global interest of genericity or the concrete feasibility of system customization by non-expert teachers. In other cases, qualitative evaluations by questionnaires are used for trying to answer these fundamental questions. This is the case for Cool Modes (Pinkwart, 2003) and OXEnTCHE-Chat (Vieira, Teixeira, Timoteo, Tedesco, \& Barros, 2004). Finally, some researchers honestly recognize the lack of a convincing approach for realistically evaluating complex environments: "as Co-Lab is a large comprehensive system, evaluation studies have had to focus on speciffc aspects of it, rather than evaluating the whole system" (van Joolingen, de Jong, Lazonder, Savelsbergh, \& Manlove, 2005).

Our proposal for evaluating the global interest and concrete feasibility of the Omega+ generic approach, briefly discussed in the introduction section, is twofold. First, the usefulness of the approach is demonstrated by showing that Omega+ can emulate, at least in their main functionalities, a large set of existing tools. For simple tools, the demonstration is only based on the list of provided functionalities. For more complex tools, evaluation scenarios mimic published pilot studies with the original tools. Table 2 summarizes a first list of tools that Omega+ can emulate completely or in large part.

Second, the strategy for realistically evaluating Omega+ usage questions is to provide a collaborative web platform dedicated to CSCL practice, evaluation, and dissemination. The ESCOLE+ platform (Environment for Supporting COLlective Learning Enthusiasts) is built on top of LibreSource (http://www.libresource.org),

Table 2 Examples of CSCL Tools That Omega+ Can Emulate

Tools	Emulated functionalities	Not emulated	t2.2
Lead Line (Farnham et al., 2000)	Scripted chat with scripts defining roles and scenes		t2.3
Better Blether (Robertson et al., 1998)	Structured chat with predefined sentence openers		t2.4
Belvedere (Suthers \& Jones, 1997)	Visual inquiry environment using maps with discourse acts and evidential relations		t2.5
ACT (Gogoulou et al., 2005)	Generic chat with scaffolding sentence templates	The threaded view	t2.6
Learning Protocol Mühlpfordt, 2002)	Protocol-constrained textual environment		t2.7
Modelling Spaces (Avouris et al., 2004)	Visual modelling environment with a shared workspace, a chat and an editor of primitive objects	The supervision tool	t2.8
Comet (Soller et al., 1999)	Shared OMT Diagrammer and structured chat (with sentence openers and speech acts)	The analyser of collaborative episodes	t2.9
Drew (Baker et al., 2003)	Interactive tools for graphical argumentation		t2.10
Coler (ConstantinoGonzález \& Suthers, 2001)	Private/public workspace for entityrelationship modelling and chat	The personal coaching agent	t2.11

an open source J2EE collaborative web platform developed in our research team
and already used in different production environments. ESCOLE+ aims at hosting virtual communities of volunteer teachers, CSCL specialists, and students for
designing, executing, and tutoring Omega+ based CSCL sessions, analyzing them, and debating all technical and pedagogical issues. ESCOLE+ provides Design Spaces
for developers to deliver Omega+ process models. Each definition space is a design
sub-project, created from a standard template with an instantiation tool. In each
definition space, teachers and CSCL specialists can access Omega+ design environment for creating, browsing, and customizing Omega+ models. They can also use various communication tools for discussing all related pedagogical and technical issues (news, forum, issue tracker, wiki page, mailing list, etc.), and share technical
documentations, experience reports, and Omega+ log files in the download area.
For creating a specific execution space within the Learning Space, designers can678
work in the "LibreSource style" by manually creating a LibreSource template in the design space and by using the dedicated instantiation tool. They can also work in the
"Omega+ style" by generating an XML project file from a LibreSource process model created with the Omega+ design environment. In this case, Omega+ generic editor is parameterized by the LibreSource meta-model that defines all concept types necessary for describing an execution space: sub-space nodes, resource nodes, user-group nodes, precedence and inclusion relationships.

In our first lab experiments of ESCOLE+, we designed a collective learning
process that aims at improving the skill of students in understanding and
summarizing a complex document. It includes five steps implemented through five 689sub-spaces:690
1.) "Initialization": in this space the tutor uploads the text containing the 691
knowledge to be acquired which will be analyzed by a small group of three 692 692
to five students. 693
2.) "Initial Summary": in this space students receive a description of their first task, 694
i.e., reading the text and producing a personal summary (20 lines maximum); 695
they download the text and upload their initial summaries; when all summaries 696
are downloaded the tutor can announce the next synchronous session to all 697students.698
3.) "CSCL Session": in this space students use the Omega+ synchronous tool and 699
follow the COTEXT method (O'Donnell \& Dansereau, 1992; Pfister \& 700
Mühlpfordt, 2002). The text is divided into as many sections as there are 701
students. Each section is associated with a two-step iteration (Omega+ process 702
model). At the beginning of each iteration, the Summarizer role is taken by the 703
next student. 704

- a "Production step" where a student, playing the Summarizer learning role, 705
produces a summary, 706
- a "Review step" where the other students act as Commentators in accordance 707
with the COTEXT protocol (Omega+ protocol model). Each Commentator 708
produces a correction, a supplement or a comment. If a correction or sup- 709
plement is provided, it is the Summarizer's turn to accept or reject the pro- 710
posed contribution. If a comment is provided, it is the next Commentator's 711
turn. This cycle repeats until no correction or supplement is given. 712
4.) "Final Summary": in this space students must upload their final summary of the 713
document taking into account all that has been said in the previous 714collaborative step.715
5.) "Assessment": in this space the tutor reads all initial and final summaries for 716
producing the final evaluation report describing how the different students 717
have improved their summaries through the collaborative phase and the 718
COTEXT method. 719
As a conclusion to this glance at the ESCOLE+ platform, we emphasize its 720
fundamental role complementing Omega+ in three domains. 721
1.) ESCOLE+ provides support for hybrid processes mixing synchronous and 722
asynchronous interactions, like other recent systems such as KnowledgeForum 723
(Scardamalia, 2003) or Synergia (Stahl, 2004). 724
2.) ESCOLE+ is the way to collect detailed usage information from the real world, 725
through Omega+ anonymized logs and ESCOLE+ event lists. Such information 726
may include the percentage of teachers who try to customize library models, 727
the models that are chosen in the library, and the dynamic malleability features 728that are used by tutors and learners.729
3.) ESCOLE+ supports both teacher and student learning. The technical and 730
pedagogical development of teachers can be progressive. First, newcomers can 731learn about pedagogical, technical and practical issues directly, by observing
732
ongoing processes, in a way similar to what is described in open-source 733

Abstract

communities (von Krogh, Spaeth, \& Lakhani, 2003). They can learn also indirectly by reading experiment reports and best practices catalogs and by 735 communicating with CSCL specialists and other interested teachers. Later, observers can start to participate in collective learning activity definition and design. Finally, they can tutor activities with their own students or other students, possibly with the help of more experienced teachers at the beginning.

Conclusion

Building flexible, tailorable, and negotiable systems, appropriate for various 742
collaborative settings, conditions and contexts is a central objective of the CSCL 743
community.
Omega+ promotes the concept of multi-dimensional model-based genericity for 744 reaching this goal. This approach mainly provides static definitional malleability through the inclusion in models of a selected number of structural constraints. But definitional malleability is not sufficient and has to be complemented by dynamic operational malleability for tutors and students and developmental malleability for tool developers. Two fundamental issues concerning the way to evaluate such a large comprehensive system and the way to ensure thetechnical andpedagogical development of teachers also receive an original technological answer through the ESCOLE+ specialized collaborative web platform.

The next period in our research work will be mainly devoted to enlarging the collection of predefined process models. Each of them will be tested through lab experiments. We anticipate the fact that most teachers will probably give priority to predefined process models as defined at the ESCOLE+ level, including Omega+ synchronous sessions driven by predefined process, protocol, artifact and effect models.

The long-term objective of our research is to enlarge the community of CSCL practitioners far beyond the current kernel of early adopters. But we are aware that we still have a long way to go to build truly mature CSCL environments of the next generation, which more powerful and flexible. The example of open-source software shows that a large exposure to a community of practice is an efficient means for meeting such practical and qualitative objectives. The ESCOLE+ platform dedicated to CSCL practice, evaluation, and dissemination could also help in that direction by hosting Omega+ as well as a variety of other CSCL systems.

References

[^2]Designing for change in networked learning environments, Proceedings of the International Conference on Computer Support for Collaborative Learning 2003 (pp. 11-20). Dodrecht, The Netherlands: Kluwer.
Barros, B., \& Verdejo, M. (2000). Analysing student interaction processes in order to improve collaboration. The DEGREE approach, International Journal of Artificial Intelligence in Education, 11, 221-241.
Benner, K., Feather, M., Johnson, W., \& Zorman, L. (1993). Utilizing scenarios in the software development process. In N. Prakash, C. Rolland, \& B. Pernici (Eds.), Information system development process (pp. 117-134). Netherlands: Elsevier.
Bødker, S., \& Christiansen, E. (1997). Scenarios as springboards in design. In G. Bowker, L. Gaser, S. Star, \& W. Turner (Eds.), Social science research, technical systems and cooperative work (pp. 217-234). Washington, District of Columbia: Aspen Institute.
Börding, J., Voss, A., Walther, J., Wolff, V., Ocakli, A., de Groot, R. et al. (2003). DUNESDialogic and argumentative negotiation educational software. In A. Bode, J. Desel, S. Rathmeyer, \& M. Wessner (Eds.), DeLFI 2003 (pp. 290-298). Bonn, Germany: LNI.
Bradner, E., Kellog, W. A., \& Erickson, T. (1999). The adoption and use of babble: A field study of chat in the workplace. In Proceedings of ECSCW'99 (pp. 139-158). Dodrecht, The Netherlands: Kluwer.
Clark, H., \& Schaefer, E. (1989). Contributing to discourse. Cognitive Science, 13, 259-294.
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
Collins, A., Brown, J. S., \& Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning and instruction: Essays in honour of Robert Glaser (pp. 453-494). Hillsdale, New Jersey: Lawrence Erlbaum.
Constantino-González, M., \& Suthers, D. (2001). Coaching collaboration in a computer-mediated learning environment. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community. Proceedings of CSCL 2002 (pp. 583-586). Hillsdale, New Jersey: Lawrence Erlbaum.
Dillenbourg, P. (1999). What do you mean by collaborative learning? In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches (pp. 1-20). Oxford: Elsevier.
Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we support CSCL? (pp. 61-91). Heerlen: Open Universiteit Nederland.
Dillenbourg, P. (2005). Designing biases that augment socio-cognitive interactions. In R. Bromme, F. W. Hesse, \& H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication and how they may be overcome (p. 1). Berlin Heidelberg New York: Springer.
Dimitracopoulou, A. (2005). Designing collaborative learning systems: Current trends \& future research agenda. In T. Koschmann, D. Suthers, \& T. W. Chan (Eds.), Proceedings of Computer Supported Collaborative Learning 2005: The next 10 years! (pp. 115-124). Mahwah, New Jersey: Lawrence Erlbaum.
Fadel, L., \& Nazareth, A. (2004). Animated-chat, facial expression to support social sense of presence. In A. Soller, P. Jermann, M. Mühlenbrock, \& A. M. Monés (Eds.), Proceedings of the 2nd International Workshop on Designing Computational Models of Collaborative Learning Interaction (pp. 95-99). Maceio, Brazil: http://www.cscl-research.com/Dr/ITS2004Workshop/ proceedings.pdf.
Farnham, S., Chesley, H. R., McGhee, D. E., Kawal, R., \& Landau, J. (2000). Structured online interactions: Improving the decision-making of small discussion groups. In Proceedings of Computer Supported Cooperative Work 2000 (pp. 299-308). New York, New York: ACM.
Fidas, C., Komis, V., Avouris, N., \& Dimitracopoulou, A. (2002). Collaborative problem solving using an open modeling environment. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community. Proceedings of CSCL 2002 (pp. 654-655.). Hillsdale, New Jersey: Lawrence Erlbaum.
Garcia, A., \& Jacobs, J. (1999). The eyes of the beholder: Understanding the turn talking system, in quasi-synchronous computer mediated communication. Research on Language and Social Interaction, 32(4), 337-367.
Gogoulou, A., Gouli, E., Grigoriadou, M., \& Samarakou, M. (2005). ACT: A web-based adaptive communication tool. In T. Koschmann, D. Suthers, \& T. W. Chan (Eds.), Proceedings of Computer Supported Collaborative Learning 2005: The next 10 years! (pp. 180-189). Mahwah, New Jersey: Lawrence Erlbaum.
Haatainen, E., \& Korhonen, K. (2002). Guidelines for teacher training and technical and pedagogical support: ITCOLE teacher training and consulting model (ITCOLE Project Deliverable D8.1,

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

IST-2000-26249). Helsinki, Finland: University of Art and Design, Media Lab: http://www.eurocscl.org/site/itcole/D8_1_guidelines_for_teach.pdf.
Hernandez, D., Asensio, J. I., \& Dimitriadis, Y. (2004). IMS learning design support for the formalisation of collaborative learning flow patterns. Proceedings of the Fourth IEEE International Conference on Advanced Learning Technologies (ICALT'04) (pp. 350-354). Piscataway, New Jersey: IEEE.
Herrington, J., \& Oliver, R. (1995). Critical characteristics of situated learning: Implications for the instructional design of multimedia. In J. Pearce \& A. Ellis (Eds.), Learning with technology (pp. 253-262). Parkville, VA: University of Melbourne.
Holst, S. (2000). Evaluation of collaborative virtual learning environments: The state of the art. In F. Scheuermann (Ed.), Campus 2000: Lernen in neuen Organisationsformen. Proceedings of GMW 2000 Fachtagung der Gesellschaft für Medien in der Wissenschaft (pp.199-212). Innsbruck, Austria, September, 19.
Jackson, S., Stratford, S., Krajcik, J., \& Soloway, E. (1996). Making dynamic modeling accessible to pre-college science students. Interactive Learning Environments, 4(3), 233-257.
Jaspers, J., Erkens, G., \& Kanselaar, G. (2001). COSAR: Collaborative writing of argumentative texts. In T. Okamoto, R. Hartley, Kinshuk, \& J. P. Klus (Eds.), Advanced learning technologies. Issues, achievements and challenges (pp. 269-272). Piscataway, New Jersey: IEEE.
Jermann, P., Soller, A., \& Muehlenbrock, M. (2001). From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. In P. Dillenbourg, A. Eurelings, \& K. Hakkarainen (Eds.), Proceedings of Euro CSCL 2001: European Perspectives on Computersupported Collaborative Learning (pp. 324-331). Maastricht, The Netherlands, University of Maastricht.
Kurlander, D., Skelly, T., \& Salesin, D. (1996). Comic chat. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (pp. 225-236). New York, New York: Addison-Wesley.
Lipponen, L. (2002). Exploring foundations for computer-supported collaborative learning. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community. Proceedings of CSCL 2002 (pp. 72-81). Hillsdale, New Jersey: Lawrence Erlbaum.
Löhner, S., van Joolingen, W., \& Savelsbergh, E. (2003). The effect of external representation on constructing computer models of complex phenomena. Instructional Science, Volume 31 (pp. 395-418). Dodrecht, The Netherlands: Kluwer.
Lonchamp, J. (2005). A structured chat framework for distributed educational settings. In T. Koschmann, D. Suthers, \& T. W. Chan (Eds.), Proceedings of computer supported collaborative learning 2005: The next 10 years! (pp. 403-407). Mahwah, New Jersey: Lawrence Erlbaum.
McManus, M., \& Aiken, R. (1996). Teaching collaborative skills with a group leader computer tutor. Education and Information Technologies, 1, 75-96.
Miao, Y., Hoeksema, K., Hoppe, H. U., \& Harrer, A. (2005). CSCL scripts: Modeling features and potential use. In T. Koschmann, D. Suthers, \& T. W. Chan (Eds.), Proceedings of computer supported collaborative learning 2005: The next 10 years! (pp. 423-432). Mahwah, New Jersey: Lawrence Erlbaum.
Moore, M. G. (1993). Transactional distance theory. In D. Keegan (Ed.), Theoretical principles of distance education (pp. 22-38). London: Routledge.
Mühlpfordt, M., \& Wessner, M. (2005). Explicit referencing in chat supports collaborative learning. In T. Koschmann, D. Suthers, \& T. W. Chan (Eds.), Proceedings of Computer Supported Collaborative Learning 2005: The next 10 years! (pp. 460-469). Mahwah, New Jersey: Lawrence Erlbaum.
Münzer, S., \& Xiao, B. (2004). Synchronous cooperative distance learning at the workplace: Technology and other factors determining the quality of the learning process. In K. Tochterman \& H. Maurer (Eds.), Proceedings of I-Know '04 (pp. 543-550). Graz, Austria: Know-Center Austria.
O’Donnell, A., \& Dansereau, D. (1992). Scripted cooperation in student dyads: A method for analyzing and enhancing academic learning and performance. In R. Hertz-Lazarowitz \& N. Miller (Eds.), Interaction in cooperative groups-the theoretical anatomy of group learning (pp. 120-141). Cambridge: Cambridge University Press.
O'Neil, J., \& Martin, D. (2003). Text chat in action. In Proceedings of the 2003 International ACM SIGGROUP Conference on Supporting Group Work (pp. 40-49). New York, New York: ACM.
Pea, R., Edelson, D., \& Gomez, L. (1994). Distributed collaborative science learning using scientific visualization and wideband telecommunications. Symposium Multimedia information systems
for science and engineering education: Harnessing technologies. Symposium conducted at the 160th Meeting of the American Association for the Advancement of Science, San Francisco, California, February.
Pfister, H.-R., \& Mühlpfordt, M. (2002). Supporting discourse in a synchronous learning environment: The learning protocol approach. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community: Proceedings of CSCL 2002 (pp. 581-589).
Pimentel, M., Fuks, H., \& Lucena, C. (2005). Mediated chat development process: Avoiding chat confusion on educational debates. In T. Koschmann, D. Suthers, \& T. W. Chan (Eds.), Proceedings of Computer Supported Collaborative Learning 2005: The next 10 years! (pp. 494498). Mahwah, New Jersey: Lawrence Erlbaum.

Pinkwart, N. (2003). A plug-in architecture for graph based collaborative modeling systems. In U. Hoppe, F. Verdejo, \& J. Kay (Eds.), Shaping the future of learning through intelligent technologies: Proceedings of the 11th Conference on Artificial Intelligence in Education (pp. 535-536). Amsterdam, The Netherlands: IOS.
Robertson, J., Good, J., \& Pain, H. (1998). Better Blether: The design and evaluation of a discussion tool for education. International Journal of Artificial Intelligence in Education, 9, 219-236.
Rosson, M., \& Carroll, J. (2002). Usability engineering: Scenario-based development of humancomputer interaction. San Francisco, California: Morgan Kaufmann.
Scardamalia, M. (2003). Knowledge Forum (Advances beyond CSILE). Journal of Distance Education, 17(Suppl. 3), 23-28.
Siebra, S., Christ, C., Queiroz, A., Tedesco, P., \& Barros, F. (2004). SmartChat-An intelligent environment for collaborative discussions. In J. C. Lester et al. (Eds.), LNCS 3220:Proceedings of ITS 2004 (pp. 315-324). Berlin Heidelberg New York: Springer.
Singley, M., Singh, M., Fairweather, P., Farrell, R., \& Swerling, S. (2000). Algebra jam: supporting teamwork and managing roles in a collaborative learning environment. In Proceedings of the 2000 ACM conference on Computer supported cooperative work (CSCW) (pp. 145-154). New York, New York: ACM.
Smith, M., Cadiz, J. J., \& Burkhalter, B. (2000). Conversation trees and threaded chats. In Proceedings of CSCW 2000 (pp. 97-105). New York, New York: ACM.
Soller, A., Linton, F., Goodman, B., \& Lesgold, A. (1999). Toward intelligent analysis and support of collaborative learning interaction. In Proceedings of the ninth International Conference on Artificial Intelligence in Education (pp. 75-82). Amsterdam, The Netherlands: IOS.
Spector, J. M. (2000). System dynamics and interactive learning environments: Lessons learned and implications for the future. Simulation \& Gaming, 31(4), 528-535.
Stahl, G. (2004). Groupware goes to school: adapting BSCW to the classroom. International Journal of Computer Applications in Technology, 19(3-4), 162-174.
Suchman, L. (1987). Plans and situated action. Cambridge, Massachusetts: Cambridge University Press.
Suthers, D. (2005). Technology affordances for intersubjective learning: A thematic agenda for CSCL. In T. Koschmann, D. Suthers, \& T. W. Chan (Eds.), Proceedings of Computer Supported Collaborative Learning 2005: The next 10 years! (pp. 662-671). Mahwah, New Jersey: Lawrence Erlbaum.
Suthers, D., \& Jones, D. (1997). An architecture for intelligent collaborative educational systems. In Proceedings of 8th World Conference on Artificial Intelligence in Education (AI-ED'97) (pp. 5562). Amsterdam, The Netherlands: IOS.

Tattersall, C., Vogten, H., \& Hermans, H. (2005). The edubox learning design player. In Koper \& Tattersall (Eds.), Learning design (pp. 303-310). Berlin Heidelberg New York: Springer.
van Joolingen, W., de Jong, T., Lazonder, A., Savelsbergh, E., \& Manlove, S. (2005). Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning. Computers in Human Behavior, 21, 671-688.
Viegas, F. B., \& Donath, J. S. (1999). Chat circles. In Proceedings of CHI 1999 (pp. 9-16). New York, New York: ACM.
Vieira, A., Teixeira, L., Timoteo, A., Tedesco, P., \& Barros, F. (2004). Analyzing online collaborative dialogues: The OXEnTCHE-chat. In J. C. Lester et al. (Eds.), LNCS 3220: Proceedings of ITS 2004 (pp. 315-324). Berlin Heidelberg New York: Springer.
von Krogh, G., Spaeth, S., \& Lakhani, K. (2003). Community, joining, and specialization in open source software innovation: a case study. Research Policy, 32, 1217-1241.
Vronay, D., Smith, M., \& Drucker, S. (1999). Streaming media interfaces for chat. In Proceedings of UIST 1999 (pp. 19-26). New York, New York: ACM.
Vygotsky, L. (1978). Mind in Society: The development of higher psychological processes. 961
Cambridge, Massachusetts: Harvard University Press. 962
Whitehead, R. K., \& Stotts, D. (2000). ProChat: Dynamic formal collaboration protocols in a chat 963
tool for handled collaboration (Technical Report UNC TR00-016). Durham, University of 964
North Carolina 965
Winograd, T., \& Flores, F. (1986). Understanding computers and cognition. New Jersey: Ablex. 966
Wood, D., Bruner, J. S., \& Ross, G. (1976). The role of tutoring in problem solving. Journal of Child 967Psychology and Psychiatry, 17, 89-100.968
Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 969
21(2), 179-217. 970

[^0]: J. Lonchamp (\boxtimes)

 LORIA—Université Nancy 2, BP 239, Vandœuvre-lès-Nancy, 54506, France
 e-mail: jloncham@loria.fr

[^1]: Relations between tool and resource use
 frequencies and
 the scores for the argumentative quality
 of the texts.
 Comparison of an explanation discourse
 guided by the EXP-protocol with an
 equivalent
 discourse using conventional free-text chat.
 Comparison between chat with graph and
 chat-only. No significant difference.
 Plan to distribute a questionnaire to get an
 impression how skilled one has to be in order
 to a) use the system and b) develop plug-ins

[^2]: Avouris, N., Komis, V., Margaritis, M., \& Fidas, C. (2004). Modeling space: A tool for synchronous collaborative problem solving. In Proceedings of AACE Conf. ED-MEDIA'04 (pp. 381-386).
 Baker, M. J. (1997). Structuring and scaffolding reflective interactions in a computer-supported 772 collaborative learning environment. Invited Symposium on Tools and Interactions in Distributed Cognitive Systems. In Proceedings of the European Conference for Research in Learning and Instruction, August, Athens, Greece.771 773
 un J 775
 Baker, M. J., \& Lund, K. (1996). Flexibly structuring the interaction in a CSCL environment. In P. 776 Brna, A. Paiva, \& J. Self (Eds.), Proceedings of the Euro AIED Conference (pp. 401-407). Lisbon: Edições Colibri.
 Baker, M. J., Quignard, M., Lund, K., \& Séjourné, A. (2003). Computer-supported collaborative 778
 Baker, M. J., Quignard, M., Lund, K., \& Séjourné, A. (2003). Computer-supported collaborative

