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9Abstract This study was designed as a confirmatory study of Kapur’s ( Cognition and
10Instruction, 26(3), 379–424, 2008) work on productive failure. N=177, 11th-grade science
11students were randomly assigned to solve either well- or ill-structured problems in a
12computer-supported collaborative learning (CSCL) environment without the provision of
13any external support structures or scaffolds. After group problem solving, all students
14individually solved well-structured problems followed by ill-structured problems. Com-
15pared to groups who solved well-structured problems, groups who solved ill-structured
16problems expectedly struggled with defining, analyzing, and solving the problems.
17However, despite failing in their collaborative problem-solving efforts, these students
18outperformed their counterparts from the well-structured condition on the individual near
19and far transfer measures subsequently, thereby confirming the productive failure
20hypothesis. Building on the previous study, additional analyses revealed that neither
21preexisting differences in prior knowledge nor the variation in group outcomes (quality of
22solutions produced) seemed to have had any significant effect on individual near and far
23transfer measures, lending support to the idea that it was the nature of the collaborative
24process that explained productive failure.

25Keywords Ill-structured problem solving .Well-structured problem solving .

26Synchronous collaboration . Problem-solving failure
27

28Generally speaking, situative socio-constructivist perspectives underpin much of CSCL
29research (Brown et al. 1989; Scardamalia and Bereiter 2003; Stahl 2005). An integral
30proposition of this perspective is that learners need to be engaged in solving authentic, ill-
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31structured problems for deep learning to take place (Hmelo-Silver 2004; Spiro et al. 1992).
32Because ill-structured problems tend to be complex and often beyond the existing
33knowledge and skill sets of learners, a substantial amount of CSCL research seeks ways of
34supporting the collaborative, problem-solving interactions by providing some structure in
35one way or another. Furthermore, a substantial amount of research shows that productive
36collaboration does not often happen when learners are left to their own devices, without the
37provision of support structures or scaffolds (e.g., Bromme et al. 2005; Hewitt 2005;
38Sandoval and Millwood 2005). It is not surprising, therefore, that CSCL research has
39tended to focus more on what is gained from such structuring of collaborative interactions
40but not as much on what could be lost (for a more general argument, see Reiser 2004).
41Structure in a problem-solving activity, broadly conceived, can be operationalized in a
42variety of forms such as structuring the problem or task itself, scaffolding, provision of
43tools and resources, micro and macro scripting, expert help, and so on (more examples in
44the following section). Thus conceptualized, structure corresponds to the degrees of
45freedom in an activity; the greater the structure, the lower the degree of freedom (Cronbach
46and Snow 1977; Kauffman 1995; Reiser 2004; Voss 2005; Woods et al. 1976). Our
47argument is not that one should not structure collaborative interactions at all. Believing in
48the efficacy of structuring what might otherwise be a complex, divergent, and unproductive
49process is indeed well supported by CSCL research (Fischer et al. 2007). Instead, our
50argument is to allow for the concomitant possibility that under certain conditions, even ill-
51structured, complex, divergent, and seemingly unproductive processes have a hidden
52efficacy about them. It is, perhaps, not so entirely inconceivable that by not structuring the
53collaborative problem-solving process—leaving groups of learners to struggle and even fail
54at tasks that are ill-structured and beyond their skills and abilities—may be a productive
55exercise in failure. It is this possibility that we have explored in our ongoing research
56program on productive failure in CSCL groups.
57This manuscript comes in four sections. In the first section, we briefly review CSCL
58research with regard to how structure has been designed to support CSCL group
59interactions. We argue that just as it is important to investigate conditions under which
60ill-structured problem-solving activities can be structured so that they lead to productive
61outcomes, it is equally important to investigate conditions under which ill-structured
62problem-solving activities, when left without any external support structures, may lead to
63productive failure. In the second section, we briefly describe one such investigation that
64formed our initial study on productive failure in CSCL groups (Kapur 2008). Noting the
65limitations of one study and the paucity of confirmatory work in education research, we
66argue for and describe a confirmatory study of productive failure. Furthermore, we extend
67the findings from the initial study and report additional analyses and findings not reported
68in the initial study. The confirmatory study with its research design and procedures,
69instrumentation, data analyses, and results (including the additional analyses) form the main
70focus of this manuscript and are described in the third section. The fourth and final section
71concludes the manuscript with a discussion of our findings, the limitations, and implications
72for future research.

73Structure in CSCL

74A focus on structuring collaborative problem-solving interactions has resulted in a healthy
75diversity of conceptions of what constitutes structure. Examples include: a) problem
76structuring (e.g., Jonassen and Kwon 2001; Kapur and Kinzer 2007), b) metacognitive
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77support through reflection prompts (e.g., Lin et al. 1999), c) content support (e.g., Fischer
78and Mandl 2005), d) interactional support through question prompts (e.g., Ge & Land
792003), e) supporting group discourse through argumentation tools and representational
80guidance (e.g., Cho and Jonassen 2002; Lund et al. 2007; Mirza et al. 2007; Suthers and
81Hundhausen 2003), f) designing interdependencies through a division of labor (e.g.,
82Dillenbourg and Jermann 2007; Schellens et al. 2007), and g) supporting the problem-
83solving process through several ways of scripting CSCL interactions (e.g., Ertl et al. 2007;
84King 2007; Kobbe et al. 2007; Rummel and Spada 2007; Weinberger et al. 2007).
85Regardless of the type of structure, it reduces the degrees of freedom in the problem-
86solving activity and is temporally administered to support learners while they are engaged
87in solving a particular problem. Invariant across the multiple conceptions of structure is the
88argument that structure increases the likelihood of group interactions being more
89productive, thereby helping learners and groups accomplish what they might not otherwise
90be able to in its absence. As noted above, much empirical work and analysis supports this
91with research consistently showing that minimally-structured problem solving rarely leads
92to productive learning outcomes (Fischer et al. 2007; for a more general argument, see
93Kirschner et al. 2006). However, this has also led to the emergence of a deeply-ingrained
94belief that collaborative problem solving needs to be structured a priori to support learners
95as they engage in solving complex, ill-structured tasks, for, without such structure, they
96may fail.
97But, the belief does not necessarily imply that there is little or no efficacy embedded in
98the failure that often results when groups solve complex, ill-structured problems in the
99absence of any support structures. Why? It is one thing to infer learning from observed
100success on measures of performance. However, the conclusion that a lack of success on
101those measures implies a lack of learning does not logically follow. In other words, even if
102A (success on performance measures) were to imply B (learning), not-A does not necessarily
103imply not-B. One is also limited by the validity and scope of the assessment measures one
104adopts (Chatterji 2003; Schwartz and Martin 2004). Furthermore, past research provides
105empirical evidence that there may very well be a hidden efficacy in ill-structured problem-
106solving processes; processes that rely on generativity on the part of the learners (Mestre
1072005); processes that are often complex and divergent (Goel and Pirolli 1992); processes
108that seemingly lead to failure in the shorter term but can potentially be productive in the
109longer term (McNamara et al. 1996; McNamara 2001; Schwartz and Bransford 1998;
110Schwartz and Martin 2004; VanLehn 1999; VanLehn et al. 2003). For example, Schwartz
111and Bransford’s (1998) work on preparation for future learning demonstrated that when
112students examined similarities and differences among contrasting cases representing a target
113concept, it prepared them to derive greater benefit from a subsequent lecture or reading on
114that concept. A similar series of design experiments by Schwartz and Martin (2004)
115demonstrated a hidden potential of invention activities in the learning of descriptive
116statistics even though these activities failed to produce canonical conceptions and solutions
117during the invention phase. Therefore, the challenge for researchers and instructional
118designers really is to realize this potentiality.

119Exploring productive failure

120We undertook the challenge to realize the above-mentioned potentiality in a study of
121productive failure (Kapur 2008; hereinafter referred to as the initial study). In contrast to a
122substantive amount of CSCL research that examines students solving ill-structured
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123problems with the provision of various support structures, the initial study examined
124students solving complex, ill-structured problems without the provision on any external
125support structures. Because this study forms the backdrop for the confirmatory study
126reported in this paper, we describe the initial study briefly.
127In the initial study, 11th-grade student triads solved either ill- or well-structured physics
128problem scenarios in an online, chat environment (the design and validation of well- and ill-
129structured problems is described in the following section). After participating in group
130problem solving, all students individually solved well-structured problems followed by ill-
131structured problems. The analyses showed that ill-structured group discussions were
132significantly more complex and divergent than those of their well-structured counterparts,
133leading to poor group performance as evidenced by the quality of solutions produced by the
134groups. However, findings also suggested a hidden efficacy in the complex, divergent
135interactional process even though it seemingly led to failure; students from groups that
136solved ill-structured problems outperformed their counterparts from the well-structured
137condition in solving the subsequent well- and ill-structured problems individually,
138suggesting a latent productivity in the failure.
139The argument that explains and forms the core of the productive failure hypothesis is
140simple. The structure received by students who solved ill-structured problems collabora-
141tively before solving well-structured problems individually helped them make better sense
142of the preceding ill-structured problems—a retrospective transferring effect (Marton 2007).
143At the same time, it also helped these students solve the very well-structured problems that
144provided the contrast better—an explanation consistent with what Bransford and Schwartz
145(1999) refer to as a transferring-in effect. In other words, solving the ill-structured
146problems not only influenced how students solved the well-structured problems but also
147that solving the well-structured problems retrospectively helped them make sense of the
148preceding ill-structured problems. In turn, this contrast of ill- followed by well-structured
149problems helped students discern (Marton 2007; Schwartz and Bransford 1998) how to
150structure an ill-structured problem, thereby becoming better solvers of ill-structured
151problems subsequently—a transferring-out effect (Bransford and Schwartz 1999).

152Going forward

153Notwithstanding a preliminary support for productive failure, the population from which
154the sample was drawn was constrained and, therefore, the findings from the initial study
155could not be extended to other contexts and settings. Hence, to assuage the concern that the
156findings from the initial study could very well be chance findings, a confirmatory study was
157necessary so as to bolster the pedagogical validity of productive failure in terms of its
158practicality and feasibility in real classroom contexts. Furthermore, while we had good
159reasons (described shortly) to choose problem structuring as the experimental manipulation
160of structure, it also limited the study’s external validity to other manipulations of structure.
161Future research would do well to examine the productive failure hypothesis using other
162operationalizations of structure. However, instead of extending productive failure across
163other operationalizations of structure, we chose to design a confirmatory study first. The
164reason was simple: If we are unable to find confirmatory evidence for productive failure in
165CSCL groups, then the question of extending the research to other operationalizations of
166structure becomes somewhat moot.
167Our decision was further bolstered by the apparent paucity of confirmatory work in
168educational research. It may at first seem reasonable to view confirmatory work
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169unfavorably as not reporting “anything new.” However, one must note that confirmatory
170work, albeit with its own set of issues, forms a cornerstone of scientific research (Collins
1711985); new findings are usually treated as tentative until they have been replicated or
172confirmed a number of times (Giles 2006). Of course, the situated and context-dependent
173nature of educational settings may well make confirmatory work problematic if not
174impossible (Barab and Squire 2004). However, one could also argue, as indeed we do, that
175the very context-dependence of educational settings underscores the importance of
176confirmatory work even more because such work can serve to reveal patterns and findings
177that remain invariant across contexts and settings. For phenomena that are especially
178complex and context-dependent, invariant patterns across contexts in and of themselves
179constitute important and new findings.
180Finally, it is important to note that the reality of doing classroom-based research across
181multiple schools required us to adhere to the curriculum time allotted for the targeted unit.
182This meant that the productive failure hypothesis had to be tested in a relatively short period
183of curriculum time, thereby restricting us to small manipulations. Problem structuring
184formed one such manipulation that was not only contextually-meaningful (given the heavy
185emphasis on problem solving in the curriculum) but also theoretically and empirically
186sound (Hmelo-Silver 2004; Jonassen 2000; Kapur and Kinzer 2007; Spiro et al. 1992).
187Indeed, we could have sought more substantive manipulations in terms of micro and macro
188scripting using more sophisticated CSCL tools with built-in argumentation tools, prompts,
189representational guidance, process scaffolds, and so on, than what the school had, but this
190would have also meant substantive undertakings in terms of teacher training and technology
191development, testing, and deployment. From a research design standpoint, it would have
192also made controlling for teacher effects across the classrooms highly problematic if not
193impossible. Instead, we chose to work within the schools’ existing social and technological
194infrastructure (Bielaczyc 2006) with the hope that if the productive failure hypothesis could
195be demonstrated and replicated with minimal changes to the school curriculum, teacher
196training, and technological infrastructure, and that, too, within a relatively short timeframe,
197then it would only speak well of the productive failure design’s practical significance. A
198minimalist approach also made it easier to carry out the confirmation study in the contexts
199of two different schools. The following sections describe the confirmatory study of
200productive failure in CSCL groups.

201Purpose

202The primary purpose of the study described herein was to provide confirmatory evidence
203for productive failure. A secondary purpose was to build on the initial study and carry out
204additional analyses to further unpack the productive failure effect (described in greater
205detail in the sections that follow). For the confirmatory part, we replicated the research
206design and procedures from the initial study (Kapur 2008), including most of the group-
207and individual-level analyses procedures. For the sake of completeness, the research design,
208instrumentation, and data analyses procedures are, for the most part, reproduced here in
209their entirety.

210Participants

211Participants were N=177, 11th-grade science students (120 male, 57 female) from two co-
212educational, English-speaking high schools in the National Capital Region of India. These
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213schools were of similar academic standing compared to the schools in the initial study.
214Students in the science stream typically study Mathematics, Physics, Chemistry, and
215English as their main academic subjects. The proportion of males to females in this sample
216is considered typical for the science stream in the senior secondary years (11th & 12th
217grades) in India. The school’s curriculum was prescribed by the Central Board of Secondary
218Education (CBSE) of India. Using data from the 10th-grade CBSE national standardized
219test scores in science, an ANOVA did not find any significant difference between the two
220schools in terms of student ability in science, p=.227. As is typically the case, students
221came from upper-middle class families and were considered technologically savvy. The
222study was designed to reflect the schools’ mathematics and science curricula. Prior to the
223study, all students had completed the curricular unit on Newtonian kinematics—the targeted
224conceptual domain of the study. It must be noted that problem solving is an integral component
225of the curricula especially in light of the high-stakes competitive entrance examinations for top
226universities in India. However, much problem solving centers on textbook-type problems,
227ranging from the simple to the very difficult. Hence, dealing with well- and ill-structured
228problem scenarios was a novel experience for both teachers and students.

229Research design & procedures

230A randomized experimental design was used. The N=177 students were first randomly
231grouped into triads, resulting in n=59 groups. These groups were then randomly assigned
232to one of two conditions: an ill-structured problem-solving condition (28 groups) or a well-
233structured problem-solving condition (31 groups). Table 1 shows the three phases in which
234the study was carried out.

235i. Phase 1: Roughly 3 days before group work, all students individually took a 25-item
236multiple-choice pretest on concepts in Newtonian kinematics (Cronbach’s alpha=.78).
237Appendix A presents three sample items.
238ii. Phase 2: Following the pretest was the collaboration phase. Groups in the ill-structured
239problem condition (IS groups) were asked to solve two ill-structured problems
240without the provision of any external support structure or scaffolds. They were
241given the ill-structured problem scenarios and then left to their own devices to
242discuss and solve the problems. Groups in the well-structured problem condition
243(WS groups) were given the same problems but in a more structured format
244(Jonassen 2000; Voss 1988, 2005; Woods et al. 1976). All problems dealt with car-
245accident scenarios requiring students to apply concepts in Newtonian kinematics,
246were content validated by physics teachers, and pilot tested (for problem design and
247validation, see the following section). Each group solved two ill-structured or two

t1.1Table 1 The three-phase research design

Phase 1
(Individual)

Phase 2 (Group) Phase 3 (Individual) t1.2

Pretest Well-structured
Condition

Solve 2 well-structured
problems in a counter-
balanced order

Well-structured
problems posttest

Ill-structured
problems posttest t1.3

Ill-structured
Condition

Solve 2 ill-structured
problems in a counter-
balanced order t1.4
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248well-structured problems (their order counterbalanced) as appropriate to their
249assigned condition. No other help, support structures, or scaffolds were provided to
250any group during problem solving. Phase 2 was carried out in the schools’ computer
251laboratories, where group members communicated with each other only through
252synchronous, text-only chat much like an instant-messaging application. As such,
253the chat application did not have any additional features such as a shared
254whiteboard, visualization and simulation tools, representational tools, and so on.
255The chat application automatically archived the transcript of their discussion and
256group solutions. Groups were given 1.5 h per problem and solved both the problems
257in one seating. It is important to note that the focus of this study was not so much on
258the design of the chat environment; we wanted to leverage existing technological
259resources—a simple, text-only chat environment that students were using pervasively
260in their daily lives—to design collaboration problem solving as an instructional and
261educational activity.
262iii. Phase 3: The day following group work, all students individually solved well-structured
263problems (WS posttest), creating a contrast for students from the IS groups. This is
264because IS group students solved ill-structured problems first, and then contrasted that
265with solving well-structured problems individually. Needless to say, the contrast
266received by IS group students can itself be seen as an external structuring mechanism.
267However, this structuring mechanism operated across the two problem-solving
268activities as opposed to operating within them, thereby setting up conditions for
269testing the hypothesis of productive failure. Finally, all students individually solved
270ill-structured problems (IS posttest). Both posttests dealt with two car accident
271scenarios each, and were content validated and pilot tested. The WS posttest was
272similar to the group problems, for which a maximum of 1.5 h were given. The IS
273posttest required students to apply more advanced concepts in Newtonian mechanics.
274A maximum of 2 h were given for the IS posttest.
275

276Design and validation of problem scenarios

277Design of problem scenarios The design of ill- and well-structured problem scenarios was
278closely aligned to a design typology for problems put forth by several researchers (e.g.,
279Goel and Pirolli 1992; Jonassen 2000; Spiro et al. 1992; Voss 1988, 2005). Accordingly, ill-
280structured problems were designed such that they possessed many problem parameters with
281varying degrees of relevance and specificity. Furthermore, some of these parameters
282interacted with one another in ways that allowed for multiple solutions and solution paths,
283thereby making the problem intrinsically more complex.
284After designing the ill-structured problem scenarios, their well-structured counterparts were
285designed by reducing the degrees of freedom in the ill-structured problem scenarios (Jonassen
2862000; Voss 2005; Woods et al. 1976). However, the targeted content in Newtonian kinematics
287was kept the same across the well- and ill-structured problem scenarios. As a result, the well-
288structured problem scenarios possessed relatively fewer problem parameters (limited
289primarily to parameters that were directly relevant to the problem) that were given with full
290specificity. Unlike in the ill-structured problems, these parameters did not interact with each
291other, thereby making the well-structured problem intrinsically simpler. As such, the well-
292structured versions of the problems did not admit multiple solutions and solution paths.
293Four problem scenarios, two well- and two ill-structured, were developed for the
294collaborative phase (phase 2) of this study (see Appendix B for one such pair of an ill-
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295structured and its corresponding well-structured problem). The problem scenarios were
296aligned to the curricula objectives of the CBSE physics curriculum, which the participating
297schools followed. Because the difference in the structure of well- and ill-structured
298problems is central to the study’s experimental manipulation, we exemplify this difference
299by considering the ill- and well-structured problem pair in Appendix B).
300Clearly, the ill-structured problem contains many more parameters than the well-
301structured problem. For example, parameters such as weight, age, traffic conditions, prior
302violations, and alcohol screening test, among others, are not in the problem space of the
303well-structured problem. However, the relevance of the additional parameters varies; some
304being more relevant to the problem than others as one would expect in an authentic
305scenario. For example, driver’s weight, age, and prior violations are perhaps not as relevant
306as traffic conditions or the alcohol screening test. Complicating the matter further, not all
307the parameters in the ill-structured problem are known with or specified to a high degree of
308certainty, requiring students to either deduce, simulate, or rely on assumptions, opinions, or
309beliefs. For example, the coefficient of friction is given as a range in the ill-structured
310problem together with a statement about the bad road conditions in the city. This is in
311contrast to the well-structured problem where the coefficient of friction is set at 0.6 without
312any further qualification. Finally, there are a greater number of interactions between the
313parameters in the ill-structured problem than in the well-structured problem. Interactions do
314not allow the parameters to be considered in an isolated, additive manner, making the ill-
315structured problem significantly more complex than the well-structured problem. For
316example, it is easier to take the stopping distance to be 15 m, that is, the length of skid
317marks as stated in the well-structured problem. However, the information (from the
318mechanic’s account) of the wear and tear and the status of the braking fluid interacts with
319the length of the skid marks in the sense that the skid marks may not directly correspond to
320the stopping distance. With more wear and tear and the braking fluid running out, the
321stopping distance is likely to be greater than the length of the skid marks. How much longer
322is again unknown, which is precisely an example of the complexity and lack of structure
323that students engaged in while solving ill-structured problems.
324Thus, the varying levels of parametric relevancy and specification coupled with greater
325number of parameters as well as interactions between them make the ill-structured problem
326more complex and ill-structured in comparison to the well-structured problem (Spiro et al.
3271992). Consequently, relative to the well-structured problem, the ill-structured problem
328admitted many more problem definitions, solutions, and solution paths as well as criteria for
329evaluating those solutions. Note, however, that the problems were similar in their respective
330goals: both types of problems required learners to take on the same role—a lawyer—and
331come to an evidence-based decision. Recall that the targeted content in Newtonian
332kinematics was kept the same across the well- and ill-structured problem scenarios.
333The ill- and well-structured problems were intentionally designed to be just beyond the
334skills and abilities of the students. Four additional problem scenarios, two well- and two ill-
335structured, were developed for the individual post-tests, that is, for the phase 3 of the study.
336The well-structured problems on the posttest were similar to the well-structured problems in
337the collaborative phase. Being similar to the WS group problems, the WS posttest did not
338contain the parametric complexity (number, specification, relevancy, interactions) that
339would somehow privilege students from the IS groups (who experienced such complexity).
340Nor did the WS posttest problem contain any additional content in Newtonian kinematics
341that would privilege students from WS or IS groups in terms of additional content exposure.
342Thus, the WS posttest problems can be seen as a measure of near transfer in terms of the
343concepts and skills required to solve them. However, the two problems on the IS posttest
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344required students to use more advanced concepts than those required to solve the problems
345in the collaborative phase. These included laws of conservation of momentum, energy, and
346impact. Neither the WS nor the IS group students encountered these concepts in the
347collaboration phase. Thus, it is reasonable to posit that exposure to content during the
348collaboration phase could not have privileged one group over the other because this
349additional content was not even targeted during the collaboration phase and the WS
350posttest. Hence, performance on the IS posttest was conceivably a measure of far transfer
351albeit still within the domain of Newtonian kinematics. Needless to say, we did not expect
352students to be able to solve these problems completely. What was important was that the IS
353posttest allowed for the possibility to examine if IS group students were better than their
354WS counterparts in flexibly adapting and building on their collaborative problem-solving
355experiences to deal with the novel IS posttest problems.

356Validation of problem scenarios Validation of all the problem scenarios was achieved in
357multiple ways. First, two physics teachers from the schools with experience in teaching the
358subject at the senior secondary levels (11th & 12th grades) helped content validate the
359problems. Second, a senior-secondary English language teacher from one of the schools
360assessed the problem statements for language and readability. This was done to ensure that
361language and readability were not confounding factors. Third, problem classification
362validation was also undertaken by having the two physics teachers classify the problems
363into categories. Their classification was consistent with the researchers’. Fourth, all problem
364scenarios were iteratively validated through a small pilot study first (Kapur and Kinzer
3652007), followed by the initial study with the previous cohorts of 11th-grade science students
366from one of the participating schools. At each stage, feedback from the teachers and
367students for content, language, and classification was incorporated to make the necessary
368changes to the problem scenarios. These studies also informed the time allocation for group
369and individual tasks so as to ensure that insufficient time was not a confounding factor for
370differences between the WS and IS groups. Indeed, as expected, students in the
371confirmatory study were able to complete the tasks, and the time stamp in the chat
372environment indicated that groups tended to make full use of the allotted time. Also,
373requests for extra time from groups were too few and far between to be of any significance.
374Thus, time taken for all group and individual tasks was effectively treated as having been
375held constant.
376Finally, we were also mindful of the possibility that the narrow bandwidth afforded by
377chat communication may have differential effects for the IS and WS groups, thereby
378confounding the study’s results and findings. While this effect can never be fully mitigated,
379careful design and validation of study’s instruments did help alleviate this concern. Both the
380pilot and exploratory studies with the previous cohort of 11th-grade students and teachers
381helped refine the problem scenarios and the study’s design to mitigate this limitation as far
382as possible. Nor did these studies reveal any such differential effects. Plus, the fact that the
383chat environment used for this study was one that students used on a daily basis for
384collaborating and chatting also worked to the study’s advantage. 385

386Data coding

387Quantitative Content Analysis (QCA; Chi 1997) was used to segment and code utterances.
388The unit of analysis was semantically defined as the function(s) that an intentional utterance
389served in the problem-solving process (Suthers 2006). Thus, every utterance was segmented
390into one or more interaction unit(s), and coded into categories adapted from the Functional
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391Category System (FCS)—an interaction coding scheme developed by Poole and Holmes
392(1995). Accordingly, each interaction unit was coded into one of seven categories:

3931. Problem Analysis (PA): Statements that define or state the causes behind a problem (e.g.,
394“I think the man was driving too fast”),
3952. Problem Critique (PC): Statements that evaluate problem analysis statements (e.g.,
396“how can you be sure that the man was driving fast”),
3973. Orientation (OO): Statements that attempt to orient or guide the group’s process, including
398simple repetitions of others’ statements or clarifications; statements that reflect on or
399evaluate the group’s process or progress (e.g., “let’s take turns giving our opinions”),
4004. Criteria Development (CD): Statements that concern criteria for decision making or
401general parameters for solutions (e.g., “we need to find the initial speed of the car”),
4025. Solution Development (SD): Suggestions of alternatives, ideas, proposals for solving
403the problem; statements that provide detail or elaborate on a previously stated
404alternative. They are neutral in character and provide ideas or further information about
405alternatives (e.g., “use the second equation of motion”),
4066. Solution Evaluation (SE): Statements that evaluate alternatives and give reasons,
407explicit or implicit, for the evaluations; this also included statements that simply agreed
408or disagreed with criteria development or solution suggestion statements; statements
409that state the decision in its final form or ask for final group confirmation of the
410decision. (e.g., “yes, but how do we get acceleration”), or
4117. Non-Task (NT): Statements that do not have anything to do with the decision task.
412They include off-topic jokes and tangents (e.g., “let’s take a break!”).

413The pilot and exploratory studies provided the necessary training for two doctoral
414students to independently code the interactions with an inter-rater reliability (Krippendorff’s
415alpha) of .81. The lead author and a physics teacher independently rated the quality of all
416group solutions as well as the individual posttest performances of all students. The physics
417teacher was blind to the treatment conditions. Krippendorff’s alphas for rating group
418solutions, WS posttest, and IS posttest were .85, .93, and .86, respectively.

419Summary of data sources & measures

420Before describing the data analysis procedures and methods, Table 2 summarizes the data
421sources as well as the various measures that were derived from them.

422Data analysis

423Data analysis was carried out at the group and the individual levels. Because the productive
424failure hypothesis rested heavily on the nature of group dynamics, a multipronged group-level
425analysis was undertaken to understand differences between the WS and IS groups in terms of:

4261. the functional content of their discussions,
4272. the sequential patterns in their discussions, and
4283. the quality of solutions they produced as a group.

429The first two measures can be seen as process measures and the third as a measure of
430group outcome. The analysis of functional content provided a quick and dirty sense of
431“what” the groups discussed vis-à-vis the FCS categories. For example, did the discussion
432focus more on problem analysis and critique or solution development, and so on? Although
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433such “coding and counting” analysis is common in CSCL research and is informative
434(Suthers 2006), it also has its limitations. Therefore, we also examined the nature of
435interactional sequences and patterns with the view that perhaps certain interactional
436sequences were more likely in IS groups than in WS groups and vice versa (Barron 2003;
437Erkens et al. 2003). For example, were attempts at problem analysis followed by more
438problem analysis or perhaps by problem critique, and so on? Finally, analysis of group
439performance revealed differences in the quality of solutions produced by IS and WS groups.
440At the individual level, we compared the performance of students from IS andWS groups on
441theWS and IS posttests. Given the nested nature of the data set (students nested within groups),
442we carried out the same analysis at the group level using group mean scores just to make sure
443our results were not dependent upon the nested nature of the data set. This was a reasonable
444strategy because we were not testing any cross-level interactions between group- and
445individual-level constructs in our study (Snijders and Bosker’s 1999). Therefore, by examining
446for consistency between group- and individual-level results, we could steer clear from
447committing ecological or atomistic fallacies, that is, applying inferences derived from group-
448level analysis at the individual-level, and vice versa (Snijders and Bosker’s 1999; Raudenbush
449and Bryk 2002). Given the extensive nature of the analyses, variables used in the data
450analyses as well as the procedures are described together with the results in the following
451section. It is important to note that in all the results reported herein—at the group and the
452individual levels—the effects of confounding factors (e.g., counterbalanced problem order,
453school, etc.) and covariates (e.g., individual pretest score, group prior knowledge as measured
454by mean pretest score, etc.) were statistically controlled for. Recall that time-on-task, both at
455the group and individual levels, was effectively held constant by design.

456Results and discussion

457Functional content of group discussions

458Controlling for the effects of school, counterbalanced problem order, group prior
459knowledge, and group English proficiency, a MANCOVA (recall that the proportion of

t2.1Table 2 Summary of data sources and measures

Data Source Derived Measure t2.2

i. 10th-grade national CBSE standardized test
scores in Science and English for each participant

■ Individual Science Ability (individual Science score) t2.3
■ Group English proficiency (Mean English score

of the group) t2.4
ii. Pretest performance score for each participant ■ Individual prior knowledge (individual pretest score) t2.5

■ Group prior knowledge (Mean pretest score of
the group) t2.6

iii. Automatically archived transcripts containing
the problem-solving interactions of groups,
including the solutions to the problems

■ Functional content of interactional activity (proportion
of interactional activity in the FCS categories) t2.7

■ Sequential patterns (Lag-sequential analysis of
significant transitions) t2.8

■ Group performance (rated quality of group solutions) t2.9
iv. Well-structured posttest solution transcripts
of each participant

■ Well-structured problem-solving ability (rated score
on WS posttest) t2.10

v. Ill-structured posttest solution transcripts of
each participant

■ Ill-structured problem-solving ability (rated score on
IS posttest) t2.11

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9059_Proof# 1 - 25/11/2008



EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

460interactional activity in the six functional categories PA, PC, OO, CD, SD, and SE formed
461the six dependent variables) revealed a significant multivariate effect of WS versus IS
462groups on the functional content of their discussions, F(6, 50)=3.46, p=.006, partial
463η2=.291. Table 3 presents the descriptive statistics.
464The six univariate Levene’s tests for equality of error variances were statistically not
465significant. Univariate analyses showed that IS groups had significantly greater proportion
466of activity centered on:

467& PA: problem analysis, F(1, 55)=16.81, p<.001, partial η2=.23,
468& PC: problem critique, F(1, 55)=12.27, p=.001, partial η2=.18, and
469& CD: criteria development, F(1, 55)=3.79, p=.047, partial η2=.06.

470In contrast, WS groups had significantly greater proportion of activity centered on:

471& SD: solution development, F(1, 55)=4.37, p=.041, partial η2=.07.

472There was no significant difference in the OO and SE activity between WS and IS
473groups. IS groups had greater proportion of interactional activity centered on PA, PC, and
474CD whereas WS groups had greater proportion of interactional activity centered on OO,
475SD, and SE. The descriptive trends were consistent with those found in the initial study.
476The only exception in terms of statistical significance was the interactional activity centered
477on SE, which was significantly greater for WS groups in the initial study, whereas our
478findings above revealed that it was not the case for the present study.

479Sequential patterns in group discussions

480The above analysis only provides an indication of “what” the groups focused on, and not
481the sequential patterns in their interactions. Lag-sequential analysis2 (LSA)—a technique
482increasingly being used to detect such patterns—treats each interactional unit (defined
483earlier) as an observation; a coded sequence of these observations forming the problem-
484solving sequence of a group discussion (Erkens et al. 2003). It detects the various non-

1 As a rule of thumb, partial η2=.01 is considered a small, .06 medium, and .14 a large effect size (Cohen,
1977).

t3.1Table 3 Descriptive statistics for functional content in group discussions in WS and IS groups

Functional Category Experiment 2 t3.2

WS Groups IS Groups t3.3

M SD M SD t3.4

PA: Problem Analysis .046 .022 .081* .031 t3.5
PC: Problem Critique .032 .016 .053* .020 t3.6
OO: Orientation .355 .128 .382 .079 t3.7
CD: Criteria Development .045 .019 .053* .018 t3.8
SD: Solution Development .354* .126 .272 .087 t3.9
SE: Solution Evaluation .151 .052 .143 .046 t3.10

t3.11* denotes significance at p<.05 or better

2 The software program Multiple Episode Protocol Analysis (MEPA) developed by Dr. Gijsbert Erkens was
used for carrying out the LSA. See http://edugate.fss.uu.nl/mepa/index.htm.
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485random aspects of interactional sequences to reveal how certain types of interactions follow
486others more often than what one would expect by chance (Wampold 1992). It accomplishes
487this by identifying statistically significant transitions from one type of interactional activity
488to another (Bakeman and Gottman 1997; Wampold 1992).
489LSA revealed significant differences between the discussions of WS versus IS groups
490(see Fig. 1). In fig. 1, a circled category means that groups in that condition were at least
491twice as likely to sustain that type of activity, that is, the activity was at least twice as likely
492to appear in coherent clusters rather than be spread throughout the discussion. For example,
493PA was at least twice as likely to be followed by more PA in WS groups than in IS groups;
494attempts at problem analysis were followed by more problem analysis. An arrow represents
495a directed transition. For example, PA activity was at least twice as likely to be followed by
496PC activity in IS groups; attempts at problem analysis were followed by problem critique,
497which, in turn, were followed by even more critique.
498Figure 1 suggests that with regard to how groups sustained different types of activities,
499IS groups were at least twice as likely to sustain PC and SE activities. For example,
500sequences where PC was followed by PC, and inductively, more PC, were twice as likely to
501be found in IS group discussions than in WS group discussion. In contrast, WS groups were
502at least twice as likely to sustain PA, CD, and SD activities. Note how LSA reveals
503differences in interactional patterns where the earlier analysis of functional content did not.
504For example, whereas IS groups spent a greater proportion of their interactional activity on
505problem analysis, WS groups attempts at problem analysis were more clustered together
506than spread throughout the discussion. Note how structuring the problem reproduced the
507patterns of interaction that process scaffolds typically engender, that is, helping groups
508carry out PA, CD, SD activities in coherent phases. This lends further credence to problem
509structuring as one way in which problem-solving activities can be structured. With regard to
510transitions, there were no significant transitions that WS groups were more likely to exhibit.
511In contrast, the discussions of IS groups were more likely to exhibit many significant
512transitions (PA-PC, PA-CD, and CD-SD) as well as feedback loops (SE-PA and SE-PC).3

PA: Problem Analysis PC: Problem Critique CD: Criteria Development 
SD: Solution Development SE: Solution Evaluation 
Circled category: Sustained activity Arrow: Transition from one type of activity to another 

WS Groups IS

PA 

CD 

PC 

SD 

SE 

PA 

CD 

PC 

SD 

SE 

Groups

Fig. 1 Likely sequential patterns in the discussions of well- versus ill-structured groups

3 It is important to note that in the initial study (Kapur, 2008), LSA analysis was triangulated through an
interactional analysis of discussion excerpts explaining the various transitions and feedback loops.
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513Consistent with the initial study, the discussions of WS groups were more likely marked
514by interactional sequences of PA-PA-PA, CD-CD-CD, SD-SD-SD. Discussions of IS groups,
515by contrast, were more likely marked by sequences such as PA-PC-PC-PC, PC-PC-PC,
516PA-CD, PA-CD-SD, CD-SD, CD-SD-PC, CD-SD-PC-PC-PC, SD-PC-PC-PC, SE-SE-SE,
517SE-PA, SE-PA-PC, SE-PA-PC-PC-PC, SE-PA-CD, SE-PA-CD-SD, SE-PA-CD-SD-PC-PC-
518PC-PC, SE-PC, and SE-PC-PC-PC. The greater the number of significant transitions and
519feedback loops, the greater the number of possibilities in which the discussion could unfold
520from any given point in the discussion, in turn, suggesting not only greater interactional
521complexity but also more divergent temporal trajectories. Therefore, the IS group discussions
522seem to exhibit greater divergence and complexity relative to those of WS groups. Of course,
523an intuitive way of understanding this is to realize that the greater the number of interactions
524between the components (functional categories) of a given system (group discussion), the
525greater is its complexity (Holland 1995; Kauffman 1995). Therefore, LSA suggests that the
526greater multiplicity of the solution paths, solutions, and criteria for evaluating solutions
527afforded by ill-structured problems resulted in characteristically different, and more complex
528and divergent interactional sequences, especially in the form of transitions and feedback loops
529(Kapur et al. 2007). In contrast, interactional sequences in the discussions of WS groups were
530comparatively simpler and orderly.
531Overall, the above mentioned inferences drawn from LSA seem consistent with those found
532in the initial study. It is perhaps noteworthy that the above analysis suggests an additional
533significant transition: SD-PC transition was found to be significant in this study but not in the
534initial study. Therefore, the interactional sequences exhibited by the IS groups in the present
535study were arguably even more complex and divergent than those in the initial study.

536Group performance

537The measure of group performance was operationalized as the quality of solution produced
538by the group. This was initially problematic because there were no objectively right or
539wrong answers to the problem scenarios. However, in consultation with the teacher experts,
540the strategy adopted was to focus on the extent to which groups were able to support their
541decisions through a synthesis of both qualitative and quantitative arguments, and supporting
542them with justifiable assumptions. The extent to which groups were able to accomplish this
543was rated on a scale from 0 to 4 points in units of 0.5 using a holistic rubric shown in Table 4.
544Recall that we used the same rubric across our pilot and exploratory studies.
545AnANCOVA, F(1, 56)=4.61, p=.036, partial η2=.11, revealed that the quality of solution
546produced by WS groups, M=2.84, SD=1.26, was on average significantly better than that of
547IS groups, M=1.29, SD=1.08, controlling for group prior knowledge (see Fig. 2).

548Discussion of group-level analyses

549Differences between groups on the various process and outcome measures can be explained
550in terms of the affordances of well- versus ill-structured problems, and consequently in
551terms of the level of structure imposed on IS and WS groups. Because ill-structured
552problems do not provide a clear problem definition, IS groups spent proportionally greater
553amounts of interactional activity on problem analysis, problem critique, and criteria for
554developing a solution. This was consistent with what was found in the initial study. LSA
555further revealed that this lack of clarity in problem definition perhaps also resulted in
556sustained critiquing of attempts to analyze the problem. The larger and more complex
557solution space afforded by ill-structured problems resulted in sustained evaluation of
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558attempts at solution development, which, in turn, fed back into problem analysis and
559critique. Thus, the discussions of IS groups were, on average, more complex, and exhibited
560greater numbers and variety of transitions and feedback loops. Consistent with the findings
561of the initial study, IS groups found it difficult to converge on the causes of the problem, set
562appropriate criteria for a solution, and actually develop a solution, resulting in poor group
563performance. WS groups, on the other hand, solved problems that offered more defined
564problem and solution spaces. Thus, their discussions were, on average, more coherent, less
565complex, and less likely to exhibit complex transitions or feedback loops. WS groups found
566it relatively easier to converge on the causes of the problem, set appropriate criteria, and
567develop a solution, which, in turn, resulted in relatively higher group performance. Thus, on
568the conventional standards of efficiency, accuracy and quality of performance, IS groups
569seemed to have failed compared to WS groups.

570Individual performance

571Recall that after solving either WS or IS problems in groups, each student individually
572solved WS problems (WS posttest), followed by IS problems (IS posttest). Fig. 3 shows the
573mean individual performance on the WS and IS posttests by students from WS and IS
574groups. Analyses of individual performance on WS and IS problems follows below.

575Performance on WS posttest Controlling for the effect of individual prior knowledge, an
576ANCOVA revealed that students from IS groups, M=4.18, SD=2.07, significantly

Group Performance (Solution Quality)

WS Groups 
M  = 2.84

IS Groups
M  = 1.29

0

1

2

3

4

5

S
co

re

Fig. 2 Group performance of
WS and IS Groups

t4.1Table 4 Rubric for coding quality of group solution

Quality Description t4.2

0 Solution weakly supported, if at all t4.3
1 Solution supported in a limited way relying either on a purely quantitative or a qualitative

argument with little, if any, discussion and justification of the assumptions made t4.4
2 Solution is only partially supported by a mix of both qualitative and quantitative arguments;

assumptions made are not mentioned, adequately discussed, or justified to support the decision t4.5
3 Solution synthesizes both qualitative and quantitative arguments; assumptions made are not

adequately discussed and justified to support the decision t4.6
4 Solution synthesizes both qualitative and quantitative arguments; assumptions made are

adequately discussed and justified to support the decision t4.7

t4.8Mid-point scores of .5, 1.5, 2.5, and 3.5 were assigned when the quality of solution was assessed to be
between the major units 0, 1, 2, 3, and 4
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577outperformed their counterparts from the WS groups, M=2.91, SD=2.33, on the WS
578posttest, F(1, 159)=18.79, p<.001, partial η2=.11. Fifteen students with missing data for
579either the pretest or the WS posttest were excluded from the analysis.
580As noted earlier, a limitation of this analysis is that it ignores the error correlations
581between group members. To examine whether these results hold at the group level as well,
582a similar analysis at the group level was necessary with mean WS posttest score for the
583group as the dependent variable (Snijders and Bosker’s 1999; Raudenbush and Bryk 2002).
584Controlling for the effect of group prior knowledge and group solution quality, an
585ANCOVA revealed that the average WS posttest performance of IS groups, M=4.24, SD=
5861.47, was significantly better than their counterparts from the WS groups, M=2.87, SD=
5871.83, on the WS posttest, F(1, 55)=17.26, p<.001, partial η2=.24.
588Taken together, the results seemed stable across the level (individual or group) of
589analysis, that is, students from IS groups performed significantly better on the WS posttest
590than those from the WS groups. It is interesting to note that the effect of individual prior
591knowledge was not significant, F(1, 159)=2.08, p=.151, nor was that of group prior
592knowledge, F(1, 54)=.03, p=.861.

593Performance on IS posttest Controlling for the effect of individual prior knowledge, an
594ANCOVA revealed that students from IS groups, M=2.22, SD=1.71, significantly
595outperformed their counterparts from the WS groups, M=.94, SD=1.25, on the WS
596posttest, F(1, 158)=18.35, p<.001, partial η2=.10. Importantly, individual performance on
597theWS posttest was a significant predictor of individual performance on IS posttest,F(1, 158)=
59830.16, p<.001, partial η2=.16.
599Once again, a similar analysis at the group level with mean IS posttest score for the group as
600the dependent variable was carried out. Controlling for the effect of group prior knowledge and
601group solution quality, an ANCOVA revealed that the mean WS posttest performance of
602IS groups, M=2.34, SD=1.37, was significantly better than their counterparts from the WS
603groups, M=.86, SD=.94, on the WS posttest, F(1, 53)=14.10, p<.001, partial η2=.21. Again,
604mean group performance on the WS posttest was a significant predictor of mean group
605performance on IS posttest, F(1, 53)=14.50, p<.001, partial η2=.22.
606Taken together, the results seemed stable across the level of analysis: students from IS
607groups performed significantly better on the IS posttest than those from the WS groups.
608Further, their performance on the WS posttest was a significant predictor of their
609performance on the IS posttest. Again, the effect of individual prior knowledge was not
610significant, F(1, 158)=1.90, p=.170, nor was that of group prior knowledge, F(1, 53)=.04,
611p=.841. 612

Individual Performance on WS and IS Post-tests
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Fig. 3 Individual performance of
students from WS and IS groups
on WS and IS posttests
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613Discussion of individual-level results

614As hypothesized, our analyses suggested that contrasting IS followed by WS problems not
615only helped students make sense of the preceding IS problem better—a retrospective
616transferring effect (Marton 2007)—but also solve the very WS problem that provided the
617contrast better—a transferring-in effect (Schwartz and Bransford 1998). In turn, this may
618have helped them become better solvers of IS problems subsequently—a transferring-out
619effect (Schwartz and Bransford 1998). All this, in the absence of the directional contrast,
620might have remained unrealized. Therefore, despite the greater struggle, complexity, and
621divergence in the discussions of IS groups resulting in failure in the short term, students
622from IS groups outperformed those in WS groups on the WS and IS posttests. This
623demonstrated confirmatory evidence for the productive failure hypothesis.

624Variation within WS and IS groups

625Missing from the initial study as well as our analyses thus far is an explanation for the variance
626of student performance within the WS and IS groups on the individual transfer measures (i.e.,
627WS and IS posttests). While, on average, IS groups exhibited productive failure, it was also
628clear that some failed more than others in the shorter term inasmuch as some students from these
629groups performed better than others on the transfer measures. Likewise, while, on average, WS
630groups exhibited shorter-term success, some clearly were more successful than others inasmuch
631as some students from these groups performed better than others on the transfer measures
632(although, on average, not as well as those from the IS groups). What explains this variation
633within WS and IS groups? Explaining the variance of student performance within WS and IS
634groups on the individual transfer measures is an important issue that the initial study was not
635designed to address, leaving it for future research to do so.
636There are three possible candidates that could possibly explain this variance, alone or in
637combination. It could be that some of the variance in individual transfer measures within
638WS and IS groups could simply be due to preexisting differences in prior knowledge of the
639students. In other words, it might be the case that students high on prior knowledge tended
640to do better on the transfer measures than those that were not, regardless of the experimental
641condition. However, from the analyses reported in the preceding section, variation on the
642measures of individual and group prior knowledge did not explain any variation in WS or
643IS posttest performance. Recall that none of the measures of prior knowledge—at the
644individual or group level—had a significant effect on WS and IS posttest performance. This
645suggests that preexisting difference in prior knowledge was not a significant factor in
646explaining variation in student performance on WS and IS posttests.
647If it is not preexisting differences in prior knowledge, then temporality suggests that
648either the nature of interactional content and patterns or group performance (or both) were
649responsible for the variation. Through an analysis of the functional content and LSA
650reported in the preceding section, we have already established how the nature of the
651interactional dynamics differed between the two experimental conditions. Therefore, it
652remained to check if a possible source of the variation could be the level of success/failure
653experienced by the groups. In other words, did students from IS groups that were more
654successful (i.e., produced better quality of group solutions) perform better on the individual
655transfer measures than students from the IS groups that were not as successful. Likewise,
656did students from WS groups that were more successful perform better on the individual
657transfer measures than students from the WS groups that were not as successful?
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658A MANCOVA did not reveal a significant effect of group performance on mean WS and
659IS posttest performance of students, F(2, 54)=1.51, p=.231, across the two conditions
660controlling for any differences in group prior knowledge. Univariate analyses further
661revealed that the effect of group performance on mean WS posttest score was not
662significant, F(1, 55)=.074, p=.787. Likewise, the effect of group performance on mean IS
663posttest score was also not significant, F(1, 55)=2.74, p=.103. This suggests that students
664from groups that produced a better quality solution did not necessarily perform better on the
665WS and IS posttests, regardless of the experimental condition, suggesting, in turn, that it
666was the nature and complexity of the interactional dynamics that was the important factor.

667General discussion

668This study was designed to provide confirmatory evidence for our exploratory work on
669productive failure. The data provided strong evidence for this: first, students from IS groups
670performed significantly better on both the WS and IS posttests compared to their
671counterparts from the WS groups; and second, their performance on the WS posttest was
672a significant predictor of their subsequent performance on the IS posttest. Therefore, despite
673the greater struggle, complexity, and divergence in the discussions of IS groups seemingly
674resulting in failure in the shorter term, students from IS groups outperformed those in WS
675groups on both the WS and IS posttests, in turn, demonstrating a confirmatory proof for
676productive failure.
677The rest of the discussion is organized around two major areas. First, notwithstanding
678the fact that we sought a confirmatory study of productive failure in the work reported here,
679we put forward a plausible explanation for the productive failure effect. Second, we
680highlight some limitations of our study as well as the analyses. These limitations naturally
681constrain and bound our claims but they also open up exciting lines of inquiry for future
682research.

683Explaining productive failure

684At a general level, the explanation for productive failure is fairly straightforward: Learner-
685generated processes that may initially seem to fail vis-à-vis conventional standards
686efficiency, accuracy, and performance quality may well have a hidden efficacy about them.
687Indeed, what separated the interactional dynamics of IS from those of the WS groups was a
688focus on problem analysis and criteria development, as well as sustained problem critique
689and solution evaluation with a number of transitions and feedback loops. Although
690seemingly unproductive and leading to failure in the shorter term, a more complex and
691divergent exploration of the problem and solution spaces as evidenced by the emergence of
692a diversity of interactional sequences was what differentiated the interactional dynamics of
693IS groups from those of WS groups. Recall that our analyses ruled out preexisting
694differences in prior knowledge and group performance as sources of variation of student
695performance on the transfer measures. Instead, it was the content and interactional patterns
696that seemed to be of primary importance. Of course, one could always argue that the
697interactional sequences in IS groups were, in itself, a structure for students in these groups.
698However, this structure seemed to have emerged from within as opposed to being imposed
699from an external source (Schwartz 1995; Stahl 2007), which is precisely the point of
700designing for productive failure. It also means that what seemed to be failure from the
701conventional lenses of efficiency, accuracy, and quality of performance may not always be
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702an adequate gauge of learning. From an alternative lens, it is quite reasonable to suggest that
703the IS groups actually did not really fail, which is precisely the point of productive failure.
704But, this still does not answer the question, “what was actually learned by IS group
705students that WS group students did not?” A reasonable explanation comes from the notion
706of knowledge assembly (Schwartz and Bransford 1998), that is, the idea that students from
707IS groups managed to assemble key ideas and concepts as well as relations between them
708better than those from WS groups, especially upon solving the well-structured problems.
709Perhaps what was happening in the complex, divergent exploration of the problem and
710solution space was that learners were seeking to assemble or structure key ideas and concepts.
711They did not quite accomplish this in the short term, but it possibly engendered sufficient
712knowledge differentiation that prepared them to better accomplish this upon receiving the
713contrast in the form of a well-structured problem. How so? Answering this question brings us
714to the notion of discernability (Marton 2007; Schwartz and Bransford 1998).
715According to Schwartz and Bransford (1998), the notion of discernability is critical to
716knowledge differentiation because “individuals learn well when they have generatively
717discerned features and structures that differentiate relevant aspects of the world” (p. 493).
718From this perspective, the explanation that perhaps what students in IS groups learned was
719how to structure an ill-structured problem seems most plausible. As hypothesized, solving
720the ill-structured problem influenced how they dealt with and learned from well-structured
721problems, which, in turn, helped them discern critical and relevant aspects of an ill-
722structured problem, both retrospectively and prospectively (Marton 2007). Indeed, as one of
723the anonymous reviewers of this manuscript pointed out, the contrasting experience
724rendered features of both well- and ill-structured problems discernable; features that
725perhaps remained indiscernible to students who had not struggled to structure problems
726themselves. Therefore, the learning happened when the students moved from one context to
727the next (i.e., the contrast of solving ill-structured problems followed by well-structured
728problems), not simply in the experience of what seemed to be failure. Seen this way, our
729findings are consistent with past research that there may very well be a hidden efficacy of
730processes that rely on generativity on the part of the learners (Mestre 2005); processes that
731seemingly lead to failure in the shorter term but engender a productive preparation for
732future learning in the longer term (Schwartz and Bransford 1998; Schwartz and Martin
7332004).
734Finally, the ability to perceive and structure a complex, ill-structured problem is a critical
735dimension that seems to differentiate experts from novices, and a substantial amount of
736research speaks to this (e.g., de Groot 1965; Chi et al. 1981; Sandberg 1994). Because
737physics is the content domain in our two experiments, Chi et al.’s (1981) research showing
738that physics problems are perceived differently, and consequently, are categorized and
739represented differently by expert physicists than novice physics students, adds further
740weight to this explanation.

741Limitations and implications for future research

742Despite having carried out a confirmatory study of productive failure in CSCL groups, it is
743much too early to attempt any generalization of the claims; the scope of inference
744technically holds only under the conditions and settings of the respective study and is, thus,
745circumscribed by the content domain, communication modality, age group, and cultural
746dispositions, among other factors. Future extensions across content topics, age groups, and
747cultural contexts will only add greater richness, diversity, and value to the wider ecology of
748CSCL research. Thus, it becomes all the more important to delimit our findings carefully.
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749Most importantly, there is no suggestion here that productive failure will hold for
750contrasts across activities that employ a different operationalization of structure. The
751experimental manipulation in our studies has been problem structuredness. The collabo-
752rative problem-solving process could be structured in a myriad of other ways. For example,
753whether the productive failure effect will be applicable when structure is operationalized as
754micro and macro scripting of CSCL interactions remains an open question. Indeed, future
755research would do well to address it. In many ways, the contrast of having students solve
756ill- followed by well-structured problems is also a kind of a script; perhaps not a micro or a
757macro script (which are administered within problem-solving activities) but a design script
758(which is administered across problem-solving activities). Additionally, one could seek
759extensions to and connections with research on scaffolding by keeping the level of structure
760in the problems the same while varying the structure in the problem-solving process
761through the provision of process scaffolds, argumentation tools, representational tools, and
762so on. Carrying out a comparative study similar to the ones reported herein but with a
763different form of providing structure constitutes a natural and immediate extension. Such
764replications and extensions of productive failure research with different types of structuring
765form the focus of our current research program, specifically in the domain areas of physics
766and mathematics (e.g., Kapur et al. 2008).
767Another limitation stems from the scope of analyses that we have focused on thus far. In
768our efforts to demonstrate a confirmatory study of productive failure, we have mainly
769focused on broad, macro patterns in group and individual performance. Even though we
770carried out analysis of group interactions in terms of the functional content and emergent
771interactional sequences, we have not quite focused just yet on in-depth, microgenetic
772accounts of group discussions. Such microgenetic analyses, when combined with the macro
773analyses we have already carried out, would only further unpack the complexities of the
774phenomenon we seek to understand and explain. Examining the nature and content of
775interactional behaviors and relating them to eventual variation in and content of group and
776individual performance—qualitatively and quantitatively—would be most insightful. For
777example, interactional analysis might shed light on how collaborative problem solving
778influences the development of problem-solving skills. Indeed, a plausible inference one
779might draw from our macro analyses is that some of these skills were possibly appropriated
780by the individual students, as evidenced on the posttest performance measures. A
781particularly important contribution to CSCL research would be an analysis of the processes
782of appropriation; an effort that would require qualitative analysis of the group discussions.
783However, such microgenetic analysis is only in its infancy and much more work has to be
784accomplished before any meaningful findings emerge.
785Another avenue for future research and analyses stems from the finding that preexisting
786differences in individual prior knowledge did not explain variation in individual
787performance. Why is this significant? A frequent argument we have encountered is that
788productive failure instructional designs may perhaps be more suited for higher-ability
789learners. Indeed, such an argument finds support in a substantial amount of aptitude-
790treatment interaction (ATI) research (e.g., Cronbach and Snow 1977; Kyllonen and Lajoie
7912003; McNamara 2001). For example, Cronbach and Snow (1977) compared the effect of
792high versus low structure (in the form of explicit organization of information and provision
793of learning support) in instructional presentations to find that highly-structured instruction
794tended to benefit learners low on prior knowledge on the subject matter whereas relatively
795less-structured instruction tended to benefit learners higher on prior knowledge. Findings
796from our study seem to be inconsistent with past research, suggesting instead that both low
797and high knowledge can learn from the productive failure instructional approach. That said,
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798it may just as well be that the method for modeling the effect of prior knowledge is not
799congruent with the nature of the effect. In other words, it is a reasonable proposition that the
800effect of prior knowledge may be a threshold function instead of a linear function, meaning
801that beyond a certain threshold, variation in prior knowledge no longer explains the effect
802of productive failure kinds of instructional designs. There is clearly a need to rethink the
803nature of the effect of prior knowledge and its interaction with instructional designs.

804Conclusion

805Taken together, findings from the initial and confirmatory studies suggest an important
806implication for CSCL research; the implication being that by not overly structuring the
807collaborative problem-solving interactions of learners and leaving them to struggle and
808possibly even fail while solving complex, ill-structured problems can be a productive
809exercise in failure. Our argument, however, should not be mistaken as an argument against
810structuring the collaborative interactions of CSCL groups. Of course, and as we have said at
811the outset, believing in the efficacy of structuring what might otherwise be a complex,
812divergent, and unproductive process is well-placed and supported by research (Fischer et al.
8132007; Kirschner et al. 2006). We do argue, however, that we must allow for the concomitant
814possibility that under certain conditions even ill-structured, complex, divergent, and
815seemingly unproductive processes have a hidden efficacy about them. Only then can CSCL
816research systematically examine conditions under which this possibility can be realized. We
817are not alone in advocating this, and research on productive failure only adds weight to the
818growing number of voices—some louder than others—that have alluded to resisting an all-
819so-common, efficiency-dominant rush to overly structure CSCL interactions (Dillenbourg
8202002; Scardamalia and Bereiter 2003; Schwartz 1995; Stahl 2007; and more generally,
821Schwartz et al. 2005; Hatano and Inagaki 1986; Petroski 2006). Just as it is important to
822investigate the conditions under which ill-structured problem-solving activities can be
823structured so that they lead to productive success, it is perhaps equally important to
824investigate the conditions under which ill-structured problem-solving activities lead to
825productive failure in the absence of support structures. Together, the two complementary
826lines of inquiries stand to advance the field in ways that neither of them alone can.
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833Appendix A–Sample Items from the 25-item MCQ Pretest

834Two cars having different weights are traveling on a level surface with different but
835constant velocities. Within the same distance, greater force will always be required to stop
836the car with the greater
837(A) weight (B) velocity
838(C) kinetic energy (D) momentum
839A 5 kg block is resting on a rough horizontal plane. The coefficient of friction between
840the block and the plane is 0.8. A 50 N force parallel to the plane is applied on the block for
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84110 s and then removed. The block eventually comes to a stop. Assuming g=10 ms−2 and
842that the coefficient of friction does not change, the total distance traveled by the block
843equals
844(A) 20 m (B) 25 m
845(C) 100 m (D) 125 m
846A car starts moving from rest in a straight line with a constant acceleration of 5 ms−2,
847then at constant velocity, and finally decelerating at the rate of 5 ms−2 before coming to a
848stop. If the total time of motion equals 5 s and the average speed for the entire motion
849equals 4 ms−1, how long does the car move at constant velocity?
850(A) 1 s (B) 2 s
851(C) 3 s (D) 4 s

852Appendix B–Collaborative Phase Problem Scenarios

853Ill-structured Problem 1

854You have recently been hired as a lawyer for a prestigious law firm. On your first day, you
855are sent to meet with an important client who has been fined for speeding. Opening your
856work file, you find your assignment:
857Dear new lawyer,
858This morning, I received a call from Mr. Gupta asking me for help. According to him, he
859almost ran over a small boy this morning in downtown Ghaziabad and was fined for
860speeding. He insists that he was not. He says that the boy suddenly ran on to the road and
861he braked very hard and managed to avoid an accident. However, this was enough for a
862policeman who happened to be there to fine him Rs. 20,000 for speeding. Mr. Gupta is a
863very important client of our firm and we must do our best to help him. I trust you will give
864this case your best effort. I am attaching his file for your reference.
865I am meeting with Mr. Gupta later this evening. So, I need you to investigate this
866case and submit your report to me with your analyses and recommendation by today.
867Sincerely,Nitin Sharma
868Senior Partner
869PS–Please note that the word of law is very clear on this. A person is speeding if and
870only if he is driving above the legal speed limit of the road. No exceptions.
871CLIENT FILE
872Name: Mr. Amit Gupta
873Age: 52 years
874Driving Experience: 34 years
875Prior Traffic Violations: 1981 (Fined for speeding, Rs. 500),
8761993 (Fined for drunk driving, Rs. 10,000)
877To carry out your investigation, you go through a number of steps such as a)
878interviewing an eyewitness, b) analyzing the incident report filed by traffic police, c)
879accessing the medical examination reports, and d) interviewing the mechanic who inspected
880the car after the incident.
881EYEWITNESS’ ACCOUNT
882“I was walking on the roadside pavement. I don’t recall the traffic on the road to be
883particularly heavy. Suddenly, I noticed a small boy run out on to the road chasing a cricket
884ball. The next thing I heard was a loud screeching sound. I realized that it came from an
885Ambassador car skidding to a stop in order to avoid running the boy over. The boy was
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886very lucky to have escaped any injury. I think the boy took about 3 s to cross the road, but I
887don’t think he looked at the traffic before crossing the road. He was just chasing the ball!”
888TRAFFIC POLICE INCIDENT REPORT

889& Traffic conditions: Normal
890& Weather conditions: Bright and sunny; dry road
891& No evidence of a collision between the car and the boy.
892& Number of passengers in the car besides the driver: None
893& Evidence of skid marks: about 15 m
894& Speed limit on the road: 55kmph
895& Width of the road: about 4.5 m

896MEDICAL EXAMINATION REPORT
897General Comments:
898Neither the driver nor the boy sustained any physical injury whatsoever.
899Results of the car driver’s medical tests

900& BP (Blood Pressure)=110/80
901& HR (Heart Rate)=80
902& Weight=75 kg
903& Reaction Time=0.8 s on an average
904& Drug/Alcohol Screen=Negative

905MECHANIC
906You: What can you say about the condition of the car from your inspection?
907Mechanic: Well, this is a heavy car weighing about 1,570 kg and I can clearly see some
908wear and tear of the tires and the braking system. The braking fluid is also running out. As
909a result, the traction between the tires and the road does not seem to be as good as it can be.
910You: Oh! Does this mean the car was not maintained properly?
911Mechanic: Not really. You see, the traction also depends on the condition of the road.
912The coefficient of friction between the car’s tires and the road is usually between 0.6 and
9130.7. So, given the city’s roads, the level of traction not being as good is quite
914understandable.
915You: So, what are you saying?
916Mechanic: What I’m saying is that although the traction is not as good as it could have
917been, this is quite normal in Ghaziabad. Also, it is hard to tell how much of the wear and
918tear happened during the skidding itself.
919You: OK. Thank you for your time.

920Well-structured version of ill-structured problem 1

921You are a lawyer in a prestigious law firm. You’ve been assigned the following case:
922A man was driving his car when, suddenly, a small boy ran out on to the road chasing a
923ball. He slammed on the brakes and skidded to a stop, leaving a 15 m long skid mark on the
924road. Luckily the boy was not hurt, but a policeman watching from the sidewalk walked
925over and fined the man for speeding. An investigation found out that the speed limit on the
926road is 55kmph. It also determined that the coefficient of friction between the tires and the
927road was 0.6. The man’s mass was 75 kg and his reaction time, on average, was found to be
928about 0.8 s. The car’s information manual indicated the mass of the car to be 1,570 kg.
929Witnesses say that the boy took about 3 s to cross the 4.5 m wide road.
930As the man’s lawyer, will you fight the fine in court? Present your case as best you can.
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