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Abstract Research on computer-supported collaborative learning (CSCL) is often
concerned with the question of how scaffolds or other characteristics
of learning may affect learners’ social and cognitive engagement.
Such engagement in socio-cognitive activities frequently materializes
in discourse. In quantitative analyses of discourse, utterances are
typically coded, and differences in the frequency of codes are
compared between conditions. However, such traditional coding-and-
counting-based strategies neglect the temporal nature of verbal data,
and therefore provide limited and potentially misleading information
about CSCL activities. Instead, we argue that analyses of the
temporal proximity, specifically temporal co-occurrences of codes,
provide a more appropriate way to characterize socio-cognitive
activities of learning in CSCL settings. We investigate this claim by
comparing and contrasting a traditional coding-and-counting analysis
with epistemic network analysis (ENA), a discourse analysis technique
that models temporal co-occurrences of codes in discourse. We
apply both methods to data from a study that compared the effects of
individual vs. collaborative problem solving. The results suggest that
compared to a traditional coding-and-counting approach, ENA
provides more insight into the socio-cognitive learning activities of
students.

Keywords (separated by
'-')

Discourse analysis - Coding-and-counting - Epistemic network
analysis - Problem solving

Foot note information
Introduction

A major goal of research in computer supported collaborative learning
(CSCL) is to understand how to use technology to improve collaborative
learning. For example, Bause et al. (2018) investigated whether a partic-
ular design of a multitouch table that separates a private from a joint screen
area is more effective for groups working on a problem-solving task than a
design that does not include a joint working space. Likewise, many
empirical studies look at whether CSCL scripts evoke different socio-
cognitive actions than unscripted CSCL (e.g., Schwaighofer et al. 2017).
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Central to such studies is the analysis of how differently designed learning
environments impact how students interact during learning. For that pur-
pose, researchers often rely on verbal data that are captured during learn-
ing, such as transcripts of within-group talk. These data are then analyzed
to model how different learning conditions impact learners’ actions, such
as developing explanations or evaluating evidence (Teasley 1995).

Such analyses are typically based on coding-and-counting (e.g., Vogel and
Weinberger 2018). In this approach, a researcher (1) develops a coding
scheme to identify different actions that occurred during learning; (2)
applies that coding scheme to the data corpus; and (3) typically counts
the frequencies by which learners in different experimental conditions
engaged in these actions. Frequency-based methods of this coding-and-
counting-strategy thus provide a means for comparing the effects that
different conditions have on the learners’ socio-cognitive actions.
Despite its wide adoption in the CSCL community, however, coding-and-
counting-based analyses as the one just described have been repeatedly
criticized in CSCL research (Kapur 2011; Reimann 2009). In particular,
critics of such an approach argue that (1) it ignores temporality in verbal
data, and (2) it does not afford analyzing patterns of learning activities.
That is, such traditional coding-and-counting-based approaches model the
frequency of each kind of learner action (each code), but do not provide
information about whether and how these actions might be related to one
another.
For example, during collaboration, learners often develop questions and
expectations that guide their interaction with each other and with the
learning material. Counting how often each learner formulates questions
and also counting independently how often each learner refers to the
learning material tells us nothing about whether the learners have made
connections between their questions and the learning material over time.
We thus argue that using traditional coding-and-counting-based techniques
as described above is often a suboptimal strategy to model learning in
verbal data. In many cases, a more appropriate and informative approach is
to use methods that model temporal relationships between coded socio-
cognitive actions in verbal data.
In this article, we compare a traditional coding-and-counting-based anal-
ysis of a data corpus to epistemic network analysis (ENA; Shaffer et al.
2009; Shaffer 2017), an analysis method that models temporality in verbal
data. We apply both a typical coding-and-counting approach and an ENA
analysis on the same data set, and then examine the inferences that can be
drawn from the two analyses.
To further investigate the impact of failing to account for temporality in
the analysis of verbal data from a CSCL environment, we also compare the
results of ENA on the original data set with the results of ENA on a
randomized version of the original dataset. Randomizing the order of
coded learning actions within each transcript preserves the frequency of
occurrence of learner’ actions in a verbal protocol, but eliminates temporal
information from the original transcripts. Therefore, comparing the origi-
nal data set to a randomized data provides an opportunity to understand
more deeply the impact of temporality on the learning activities being
modelled.
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Engaging in socio-cognitive activities during CSCL: An example

The data we use to address these questions comes from an experiment in
which pre-service teachers were asked to reason about a pedagogical
problem (Csanadi et al. 2016). In one condition, students were asked to
discuss the problem in pairs; in the other condition, students reflected on
the problem individually using a think aloud protocol (e.g., Ericsson and
Simon 1980; Fox et al. 2011). Using transcripts of discourse, Csanadi et al.
(2016) investigated whether and how participants’ engagement in actions
of scientific reasoning such as hypothesizing and evaluating evidence,
differed between the two conditions.
Tables 1 and 2 show two excerpts from this study. In what follows, we will
refer to these two examples to describe how both traditional coding-and-
counting approaches and ENA model this data.
The transcripts from dyadic discussions and individual think-aloud proto-
cols were segmented into propositional units, and each proposition was
coded (Csanadi et al. 2016) using a coding scheme developed by Csanadi
et al. (2015) based on a heuristic framework of scientific reasoning
(Fischer et al. 2014). The coding scheme identifies one of eight kinds of
epistemic actions for each propositional unit:

(1) Problem Identification (PI): an initial attempt to build an under-
standing of the problem

(2) Questioning (Q): statements or questions triggering further inquiry
(3) Hypothesis Generation (HG): developing explanations of the

problem
(4) Generating Solutions (GS): developing interventions or solution

plans
(5) Evidence Generation (EG): reference to information or lack of

information that could support a claim
(6) Evidence Evaluation (EE): evaluating a claim
(7) Communicating and Scrutinizing (CS): planned discussions with

others (e.g., in order to find out further information)
(8) Drawing Conclusions (DC): concluding outcomes of reasoning

More specific details of segmentation and coding are discussed in the
methods section below.

Measuring socio-cognitive activities by a traditional coding-and-counting
approach

Both traditional coding-and-counting-based approaches and an ENA anal-
ysis begin with a coding phase. In the coding phase, researchers identify
socio-cognitive actions that are relevant to the research question at hand.
Then, they develop a coding framework to capture those actions in the
data, and apply the framework to the data. The whole procedure may, in
fact, include several steps and iterations of those steps (see e.g., Chi 1997;
Strijbos et al. 2006; Vogel and Weinberger 2018; Shaffer 2017). The
coding scheme we used in this experiment is described briefly above,
and in more detail in the methods section.
While both traditional coding-and-counting-based analyses and ENA
models use coded data, they differ with respect to what subsequently is

done with the coded data. In typical coding-and-counting-based studies,
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the coding phase is followed by a counting phase, in which the researcher
chooses units of analysis and computes the code frequency—the rate at
which a code appears in the data—for each code within the data from each
unit of analysis. Differences between code frequencies across units of
analysis in different conditions are then analyzed statistically.
In our case, we used a multivariate ANOVA to test whether the two

conditions (individual versus dyadic problem solving) had differential
effects on learners’ problem solving. The results, which we will present
in more detail later, were useful to understand the extent to which partic-
ipants engaged in actions of scientific reasoning, and whether the extent to
which participants engaged in those actions was different between the two
conditions, We could also have used more complex inferential methods
based on code frequencies: for example, mediation analysis, which might
test whether engagement in certain activities mediates the effect of the
experimental conditions on learning outcomes, but that was not the goal of
this study.
Although traditional coding-and-counting-based methods are often used in
CSCL research (and we ourselves have used them extensively in the past;
e.g., Csanadi et al. 2016; Kollar, Fischer, & Slotta, 2007; Stegmann et al.
2012), they have been heavily criticized (Kapur 2011; Mercer 2008;
Reimann 2009). There are at least two main arguments that have been
put forward in this respect: First, traditional analyses based on coding-and-
counting do not account for temporality in verbal data. Second, they do not
afford analyzing patterns of learning activities in verbal data.
Traditional coding-and-counting-based studies do not take into account the
temporal development of socio-cognitive activities (Reimann 2009;
Wegerif and Mercer 1997) in the sense that every instance of an action,
such as hypothesis generation, is added to an overall frequency score (see
rows “Sum” and “%” on Table 3). By summing each occurrence of the
action, such analyses assume that each instance of the action contributes in
the same way to learning outcomes (Chiu and Khoo 2005).
However, this violates a persistent finding in educational research: there
are often differences between two instances of the same action (Lämsä et
al. 2018; Roschelle and Teasley 1995; Shaffer 2006). For example, in the
discussion presented in Table 2, two learners discuss possible reasons
(Code “HG”) for the problem of an underperforming student. While
Learner A generates a very similar hypothesis in both Line 2 and 7, there
is a clarification phase in-between. During this clarification phase, Learner
B reframes the discussion by introducing the term “learning strategies,”
and in Line 7 Learner A changes her words accordingly. As a result, the
two instances of hypothesis generation are not the same: the second is
explicitly generating a hypothesis in the context of a discussion of learning
strategies.
One approach to solving this kind of problem is to use more specifically
defined codes, such as “general hypothesis generation” versus “hypothesis
generation in response to topics from the class”. However, this potentially
increases the number of codes dramatically, as well as the difficultly in
coding data and achieving good inter-rater reliability.
Traditional coding-and-counting-based analyses also do not take into
account that learning actions often occur in relation to each other
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throughout verbal protocols. As such analyses focus on the occurrence of
single actions in verbal data, they do not afford an analysis of their co-
occurrence throughout the data. For example, in Transcript 1 from Table 3,
a traditional coding-and-counting-based analysis would identify that hy-
pothesis generation (HG) occurred three times and evidence evaluation
(EE) occurred seven times, and this difference might be relevant to a

researcher. However, as the table shows, the hypothesis generation occurs
in the context of evidence evaluation: for example, in Lines 3 and 4 of
Transcript 1.
Measuring isolated variables as “components” of learning is already a
widely recognized problem in the literature (Jeong 2005; Klahr and Dun-
bar 1988; Suthers 2005; Wise and Chiu 2011). Researchers (Reimann
2009; Shaffer 2017) thus, highlight the need of accounting for the con-
nections and patterns of connections among such, in fact, interdependent
activities to capture “higher-level” entities such as learning. Neglecting the
temporal relationships between learning activities may pose severe limi-
tations for the analysis and its generalizability with respect to learning. For
example, a researcher may use code frequencies to show which actions are
correlated to each other in a discourse. The summed occurrence of hy-
pothesis generation (HG) and generating solutions (GS) in Transcript 2 are
higher than in Transcript 1. At the same time, the sum of evidence
evaluation (EE) is lower. If these counts show a systematic tendency
across multiple transcripts, then a traditional coding-and-counting-based
approach might indicate that hypothesis generation (HG) is more strongly
associated with generating solutions (GS) and negatively correlated with
evidence evaluation (EE). Yet, such an analysis would miss information of
how those activities co-occur within each transcript.
In contrast to such a traditional coding-and-counting strategy, a consider-
ation of temporal co-occurrences can reveal patterns of actions within
time- or event-intervals that are not apparent at the level of raw code
frequencies (Dyke et al. 2012; Shaffer 2017; Siebert-Evenstone et al.
2016). Such intervals can be, for example, seconds or minutes, or pairs
or triplets of propositions. This kind of approach is shown in Table 3,
where subsets of event-pairs are marked. When co-occurrences are iden-
tified as event pairs, hypothesis generation (HG) and generating solutions
(GS) do not occur together even once. In contrast, a connection between
hypothesis generation (HG) and evidence evaluation (EE) occurs three
times. If these patterns recur systematically throughout transcripts, the
researcher could conclude that hypothesis generation (HG) and generating
solutions (GS) are not closely related, but hypothesis generation (HG) and
evidence evaluation (EE) are those socio-cognitive actions that interact
with one another. More to the point, these results could be in direct
contrast with the correlational strategy of traditional coding-and-
counting-based approaches, where the overall frequency of hypothesis
generation (HG) and generating solutions (GS) could be correlated even
though the two socio-cognitive actions are never temporally co-located
(see the dilemma between “global” vs “local” correlational strategies in
Collier et al. 2016; Shaffer & Serlin, 2004).
One statistical consequence of not capturing learning-related actions as
they develop over time and co-occur with each other is a loss of statistical
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power, in the sense that the original data is highly compressed when
aggregated to just a few variables. This makes any statistical analysis that
is concerned with predicting learning outcomes based on learning actions
potentially less sensitive (Shaffer & Serlin, 2004; Kapur 2011). This
reduced power could further mean that existing relationships between
variables may remain undetected by traditional quantitative techniques

based on coding-and-counting (this phenomenon is demonstrated both
with real data and in a simulation study in Collier et al. 2016).
Researchers are also often interested in visualizing the results of an
analysis. Frequency bars are typically reported in coding-and-counting-
based analyses (see Fig. 1), but because frequency data does not account
for temporality, such bar graphs are not very informative in this respect.
More generally, traditional coding-and-counting-based approaches do not
provide the opportunity to visualize how discourse is developing over time
(Dyke et al. 2012; Hmelo-Silver et al. 2013; Suthers and Medina 2011).
These limitations of traditional coding-and-counting-bases approaches
show that ignoring the temporally developing relationships between
socio-cognitive actions of learning may affect the analysis of verbal data.
As noted above, it is true that recoding data or introducing a hierarchical
coding scheme may be a solution to some limitations of traditional coding-
and-counting-based analyses, but it is not a general solution in the sense
that it does not directly address the core problem of representing tempo-
rality (and the socio-cognitive effects of temporality) in verbal data.
Thus, we argue that CSCL research should look for and develop further
methods for analyzing verbal data to address this core problem. Such
methods should (1) account for the temporal development of learning
actions, (2) address the interdependence between learning actions, (3)
afford more powerful quantitative analyses of learning actions, and (4)
visualize the dynamics of learning in an insightful manner.

Beyond traditional coding-and-counting-based analyses: Epistemic
network analysis as a method to analyze temporal connections
of learning activities

CSCL research has developed several methods and tools for the analysis
and visual representation of verbal data that take temporality information
into account. For example, sequential analysis (Cress and Hesse 2013;
Jeong 2005; Kapur 2011) recognizes that many actions do not occur
independently from each other in verbal data. In fact, an action such as
hypothesis generation may be more likely to be followed by a certain
action such as evidence generation rather than by another action such as
drawing conclusions. The likelihood of such transitions between action
pairs is called transition probability. Such transition probabilities can
define a “most likely” pattern or sequence of actions across verbal proto-
cols. This way, sequential analysis affords the analysis of activity patterns
in the form of sequences.
Verbal data in CSCL has also been analyzed using process mining
(Reimann 2009). Process mining is not a single method, but rather an
approach for developing models and mining data to (a) gain empirical
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models or to (b) confirm existing models. These models would represent
processes of learning, such as self-regulation, including actions of, e.g.,
planning or progress monitoring (e.g., Bannert et al. 2014).
These methods have several limitations, however. First, the number of
possible sequences of actions is extremely large. As a result, these methods
require very large data sets, which are not always available (Bakeman and

Gottman 1997; Reimann and Yacef 2013). Second, such models are often
difficult to interpret, resulting in a set of specific sequences of
actions—sometimes a quite large number of such sequences—that are
statistically different between one group and another. Yet, explaining the
significance of these differences is often a challenge. Moreover, although
there are visualizations that are used to represent sequential data, such as
transition state diagrams, it is difficult to compare such representations
visually.
There are also representational tools in CSCL research that can visualize
temporal patterns of verbal data. For example, CORDTRA (Hmelo-Silver
et al. 2011) allows a researcher to visually investigate how different
activities occur over time in relation to each other. However, such visual-
ization tools do not provide a quantitative measure of the resulting differ-
ences, and do not afford analyzing the systematic temporal relationships of
events in a larger corpus of data.
For these reasons, in our investigation we chose to use epistemic network
analysis (ENA; see Marquart et al. 2018; Shaffer and Ruis 2017; Shaffer et
al. 2016; Shaffer 2006), a modeling technique that can (1) capture, (2)
visualize, (3) quantitatively compare patterns of learning activities across
conditions, and (4) be used with smaller datasets. ENA allows researchers
to model temporal co-occurrences between socio-cognitive actions, visu-
alize those co-occurrences, and conduct statistical comparisons between
different groups of learners with respect to those models.
The theoretical background of ENA is Epistemic Frame Theory (Shaffer
2017; Shaffer 2007). Epistemic Frame Theory assumes that learning
cannot be reduced to isolated components such as specific actions in the
learning process. Rather, learning is the transformation of an individual’s
epistemic network: a set of relationships that connects skills, knowledge,
and values that a learner uses to make sense of and take action on the
world. This network is expressed in discourse and changes over time
during the learning process (Shaffer 2012). ENA has been used in diverse
research settings, including (a) surgery trainees’ operative performance
during a simulated procedure (Ruis et al. 2018), (b) gaze coordination
during collaborative work (Andrist et al. 2015), (c) communication among
health care teams (Sullivan et al. 2018), and more generally in situations
where researchers want to analyze the integration of interconnected skills
in contrast to the “isolationist” methodological approach that is often used
in traditional coding-and-counting-based analyses (Arastoopour et al.
2016; Collier et al. 2016; Eagan and Hamilton 2018).
Like analyses following a traditional coding-and-counting approach, ENA
begins with verbal data that has been segmented and coded. However,
instead of computing the mere frequencies of single codes, ENA analyzes
the data segment-by-segment to identify if certain actions occur either
within the same segment or in neighboring segments. (More detailed
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explanations of the mathematics of ENA can be found in Shaffer (2017) as
well as in Shaffer and Ruis (2017); Siebert-Evenstone et al. (2017); Shaffer
et al. (2016).
The researcher can therefore identify how far the actions she is interested
in may fall from each other in the discourse. For example, in Table 3,
action pairs were marked for actions in one-step-distance from each other.

ENA can analyze connections with different scopes, however: for exam-
ple, activities that fall within a window of any size in the data, such as two,
or five, or eight steps from each other (Siebert-Evenstone et al. 2016).
Table 3 shows a window size of two (each event is analyzed in the context
of the event that immediately preceded it), meaning that ENA counts
occurrences of pairs of adjacent events. If two events occur repeatedly
over time in the discourse, the connection between these events is stronger
in the ENA model.
After analyzing all neighboring segments in a verbal protocol, a researcher
might find several connections that organize themselves into a pattern: that
is, into an epistemic network where some pairs of events are strongly
connected (they co-occurred more often in the discourse) while others are
weaker (they co-occurred less often in the discourse). Epistemic networks
can be aggregated into mean networks across individuals, such as the mean
network of all individual problem solvers or the mean network of all
dyadic problem solvers in our data. And networks can be compared by
subtracting their connection weights in one network from the weights in
the other. The resulting subtracted network represents the differences
between two epistemic networks. So, for example, by subtracting the mean
network for individual problem solvers from the mean network for dyads
in our data, it is possible to visualize and quantify the differences between
collaborative and individual reasoning.
ENA also provides a method for performing statistical tests on epistemic
networks. First, a high-dimensional space is generated where the dimen-
sions represent each pair of possible connections within the networks.
Through a dimensional reduction method, that is, single value decomposi-
tion (Shaffer et al. 2016), the space of networks can be reduced to a
simpler, one-, or two-dimensional projected ENA space. (See Shaffer et
al. 2016 for a more detailed explanation of the mathematics; see
Arastoopour et al. 2016 and Sullivan, 2018 for examples of this kind of
analysis). Then the resulting one- or two-dimensional values representing
different networks in the projected ENA space can be included in further
quantitative analysis. For example, the networks of dyadic reasoners and
those of individual reasoners can be compared to see if they the differences
between them are statistically significant: that is, if dyadic networks are
quantitatively different from individual networks.
A key feature of an ENA model is that networks are visualized using
network graphs, where nodes correspond to the codes, and edges reflect
the relative frequency of co-occurrence, or connection, between two codes.
But critically, the positions of the network graph nodes are fixed, meaning
all networks in a given ENA space have the same node locations. In
addition, those positions are determined by an optimization routine that
minimizes the difference, for any given network, between the point that
represents that given network in the projected ENA space and the centroid
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or center of mass of the same network, computed from the weights of the
connections in the network. In other words, the optimization minimizes the
difference between the point that represents a network in the projected
ENA space and the network centroid for every units in the set. Thus, if two
learners’ epistemic networks show similar patterns of connections, their
centroid values will fall close to each other in the projected ENA space

(Shaffer et al. 2016).
Optimizing the position of network nodes in this way creates a co-regis-
tration of network graphs and projected ENA space from the dimensional
reduction. As a result, the positions of the network graph nodes—and the
connections they define—can be used to interpret the dimensions of the
projected space and explain the positions of plotted points in the space.
This makes it possible to conduct quantitative comparisons between two
sets of networks in the projected ENA space (in our case, dyadic vs
individual networks), and then interpret the differences between networks
using their corresponding network graphs.

Research questions

Following concerns raised in the CSCL literature (e.g, Kapur 2011;
Reimann 2009; Shaffer 2017), we have argued that traditional coding-
and-counting-based analyses are limited for in-depth quantitative analysis
of verbal data, both regarding the analytical process and the visualization
of verbal data. ENA may add to such purely frequentist approaches as it
accounts for these limitations. In what follows, we compare these ap-
proaches empirically and set the following research questions:

RQ1: Which technique provides the best explanation of group differ-

ences with respect to learners’ engagement in different learning
actions?

To investigate this question, we analyze to what extent dyads and individ-
uals differ from each other with respect to the learning activities they
engage in during their problem solving. We first conduct a traditional
coding-and-counting-based analysis, followed by an ENA analysis, and
then compare the outcomes of the two approaches. We hypothesize that
the results of ENA will reveal information that the more traditional
coding-and-counting-based approach did not capture with respect to the
way learners engage in learning activities.

RQ2: To what extent are the results from RQ1 due to systematic

temporal co-occurrences between learning actions?
To investigate this question, we compare the epistemic networks resulting
from the analysis of RQ1 with epistemic networks generated by random-
ized version of the same data. Randomizing within each verbal protocol
removes temporality from the data by mixing up the order of coded
segments. We hypothesize that the ENA results on RQ1 will differ from
those of RQ2, showing that the findings from the ENA analysis in RQ1
cannot be explained by the frequency distributions of learning actions, but
also reflect the temporality information in the original data.
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Method

Participants and design

The data analyzed in this study, the coding procedure and its outcomes
come from a previous work (Csanadi et al. 2016). In the original study,
pre-service teachers (N = 76; 59 female, MAge = 21.22, SDAge = 3.98)
solved an educational problem case from their future professional field
(teaching) in one of two between-subject conditions: either as individuals
(N = 16) or as dyads (N = 30 dyads).

Data

In Csanadi et al. (2016), verbal problem-solving data (think aloud data
from participants in the individual condition and discourse data of partic-
ipants in the dyadic condition) were audio-recorded and transcribed.
The transcriptions were segmented into propositional units (Coder 1
agreed on 85.09% of the segments of Coder 2; Coder 2 agreed on
79.73% of the segments of Coder 1; Strijbos et al. 2006). Coding was
based on a coding scheme developed by Csanadi et al. (2015), following a
typology of epistemic actions, that is, epistemic processes of scientific
reasoning that was suggested by Fischer et al. (2014). Based on this
taxonomy, they distinguished between eight different epistemic processes:
problem identification (PI), questioning (Q), hypothesis generation (HG),
generating solutions (GS), evidence generation (EG), evidence evaluation
(EE), drawing conclusions (DC), and communicating and scrutinizing
(CS), as well as non-epistemic propositions (NE). It is important to note
that the two independent coders often found it problematic to distinguish
between cases when evidence was used to support a claim (EE) or was
used for another epistemic purpose (EG). As a result, the two coders had
most of their misclassification between evidence evaluation (EE) and
evidence generation (EG). Thus, they merged these two codes into one:
evidence evaluation (EE). Using this scheme, two raters independently
coded 10 % of the material was randomly chosen and both coders inde-
pendently applied the coding scheme to the material (κ = 0.68). After-
wards, a single rater coded the remaining data.
To answer RQ2, in the present study we created a randomized dataset of
the previously segmented propositions (see Table 4) within each dyad and
individual participant.
Table 4 illustrates our randomized dataset. This table contains the ran-
domized version of the first six lines from Table 1. Note, that the frequen-
cies of codes in case of Table 1 and Table 4 are the same. Yet, in Table 1,
the codes follow each other in the temporal order of their occurrence,
while in Table 4, such temporality does not exist.

Analysis

To answer RQ1, we applied five frequency-based inferential statistics
(MANOVA, ANOVAs, Welch-test, Chi-square test, and correlations)
and ENA to compare the outcomes of the two methodological approaches.
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For the ENA model, we used a window size of two. We chose a dimen-
sional reduction that maximized the difference between the mean of units
(participants or dyads) in the two conditions. The value of each network in
the projected ENA space (described above) was included as dependent
variable to compare dyadic and individual epistemic networks of scientific
reasoning. Mean networks were computed for both the dyadic and the

individual reasoning conditions, respectively, and we constructed a
subtracted network by subtracting the mean connection strengths for
participants in the dyadic condition from the mean connection strengths
for participants in the individual conditions. The resulting subtracted
network showed what connections contributed to the differences between
the two conditions.
To answer RQ2, we used the randomized dataset selecting the same
parameters and performing the same ENA analysis as in RQ1. We com-
pared the outcomes of this analysis with the ENA results from RQ1.

Results

RQ1: Which technique provides the best explanation of group differ-

ences with respect to learners’ engagement in different socio-cognitive
actions?

Coding-and-counting

We compared the frequency of engagement in the different socio-cogni-
tive actions across the two conditions (collaborative vs. individual). The
difference in frequency of events between the two conditions was statis-
tically significant overall (Pillai’s trace = .40, F(5,40) = 5.26, p < .001,
partial η2 = .40). Subsequent univariate comparisons showed that partici-
pation in the collaborative condition resulted in a significantly higher
engagement in hypothesis generation (M = .24, SD = .09) in contrast to
the individual condition (M = .17, SD = .11), F(1, 44) = 6.06, p < .05, par-
tial η2 = .12. Also, engagement for dyads was higher in evidence evaluation
(M = .33, SD = .11) in contrast to the individual condition (M = .26, SD =
.13) F(1, 44) = 4.28, p < .05, partial η2 = .09. Similarly, the odds to engage
in drawing conclusions were 5.43 times higher for the collaborative than
for the individual condition, χ2(1) = 4.51, p < .05. At the same time,
collaboration led to a significantly lower engagement in generating solu-
tions (M = .29, SD = .13) in comparison to the individual condition
(M = .45, SD = .24), Welch’s F(1, 19.79) = 6.56, p < .05, partial η2 = .17.
We also correlated the frequency of epistemic processes within each
condition. In the dyadic condition, generating solutions was negatively
correlated with evidence evaluation (r = �.65, p < .001) and hypothesis gen-
eration (r = �.43, p < .05), and problem identification was negatively corre-
lated with communicating and scrutinizing (r = �.38, p < .05). In the
individual condition, generating solutions was negatively correlated with
evidence evaluation (r = �.87, p < .0001), hypothesis generation (r = �.70, p
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< .01) and non-epistemic activities (r = �.50, p < .05). Problem identification
and non-epistemic activities were positively correlated (r = .52, p < .05).

ENA

As described above, we compared dyadic and individual networks. The
mean centroid value for individuals’ epistemic networks (M = .21, SD =
.32) was significantly different from the mean centroid value for dyads’
epistemic networks (M = �.11, SD = .21, t(44) = 3.65, p < .01, d = 1.32). So,
as with the traditional coding-and-counting approach, there were differ-
ences between individuals and dyads.
However, the mean network graphs for both groups (Fig. 2) showed
different relationships among epistemic practices than the traditional cod-
ing-and-counting-based analytical approach. For dyadic conversations,
evidence evaluation was central to the problem solving process: it formed
connections with hypothesis generation, communicating and scrutinizing,
generating solutions and non-epistemic propositions. In case of the more
traditional coding-and-counting-based strategy, in contrast, only one of
these four connections was visible: between evidence evaluation and
generating solutions. Furthermore, while the correlation analysis indicated
a strong negative association between evidence evaluation and generating
solutions overall, ENA showed that there was temporal co-occurrence
between the two (Fig. 2). Finally, while correlations indicated that com-
municating and scrutinizing is negatively correlated with problem identi-
fication, ENA showed temporal co-occurrence between communicating
and scrutinizing and evidence evaluation.
In the case of individuals, ENA showed that evidence evaluation was
strongly connected to hypothesis generation and generating solutions.
But in contrast with the dyadic condition, individual networks did not
have a clear central node. Rather, each of the three most frequent (Fig. 2)
epistemic practices were connected to each other. In the case of individual
problem solvers, the more traditional coding-and-counting-based analysis
identified relationships between non-epistemic propositions and problem
identification as well as between non-epistemic propositions and generat-
ing solutions. However, this coding-and-counting-based strategy did not
show the connection between hypothesis generation and generating
solutions.
Subtracting individual from dyadic networks revealed that, in comparison
to individuals, dyadic conversations were strongly characterized by the
connections between evidence evaluation and communicating and scruti-
nizing as well as between evidence evaluation and hypothesis generation.
However, these relationships were not significant for the correlational
findings from the coding-and-counting-based approach. In contrast, con-
nections from solution generation to both hypothesis generation and evi-
dence evaluation were stronger for individuals than for dyads.
In general, ENA showed that evidence evaluation was more central to the
problem solving of dyads than individuals. The correlations that we found
via the traditional coding-and-counting-based approach we used, however,
suggested the opposite: evidence evaluation was negatively correlated
with other epistemic processes.
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On the one hand, the traditional coding-and-counting-based approach and
ENA found the same activities to be central for each condition: evidence
evaluation for dyads and generating solutions for individuals. However,
our coding-and-counting-based analyses did not show the same structure
of associations between different epistemic processes, particularly in the
case of dyads.

RQ2: To what extent are the results from RQ1 due to systematic

temporal co-occurrences between learning activities?
To determine if the epistemic networks resulting from the analysis of RQ1
are due to temporal connections between socio-cognitive actions and not
merely their frequency distribution in the data, we compared epistemic
networks resulting from the analysis of RQ1 with epistemic networks

resulting from the analysis of the randomized dataset.
The quantitative outcomes with the randomized dataset showed that the
mean centroid value for the individuals’ epistemic networks (M = .17,
SD = .26) still significantly different from the mean centroid value for
dyads’ epistemic networks (M = �.09, SD = .20), t(44) = 3.35, p < .01, 95%,
d = 1.15), which prior work suggests is not surprising, as data with differ-
ences in frequencies of codes will also show differences in connections
between codes if the data is randomly ordered (Collier et al. 2016).
However, the mean epistemic networks from the two conditions in the
randomized data (Fig. 3) showed that in both conditions, participants only
made connections among the three most frequent socio-cognitive activities
(hypothesis generation, solution generation and evidence evaluation: com-
pare to Fig. 1). Thus, dyadic and individual networks showed no structural
differences from each other. These results were, therefore, in clear contrast
with the results on the original dataset (Fig. 2) where dyadic and individual
networks showed different structures of association between epistemic
processes. The randomized data set suggests that there is no central
epistemic practice in either dyadic or individual conditions. Finally, the
subtracted network model in Fig. 3 consists of only blue lines (representing
connections for dyads), indicating that ENA identified more connections
among the highly frequent codes for dyads than for individuals. The results
thus show that the epistemic networks captured from the analysis of RQ1
cannot be reduced only to the frequency distributions of epistemic prac-
tices. They reflect temporality information in the original data.

Discussion

CSCL research often compares different groups with respect to their

learning, including quantitative analysis of verbal process data. CSCL
researchers often conduct such analyses using one or more coding-and-
counting strategies, such as summarizing frequencies of occurrences, and
conducting ANOVAs or correlational analyses (e.g., Vogel and Weinber-
ger 2018). However, using such traditional coding-and-counting-based
techniques is often a suboptimal choice because it does not account for
temporality in verbal data (Reimann 2009).
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The present work aimed to (a) summarize the main limitations of tradi-
tional coding-and-counting-based approaches, (b) survey methodological
solutions that account for temporality, and (c) empirically test ENA as a
methodological addition to traditional coding-and-counting-based analyses
to identify temporal structure of relationships between codes in learning
activities.

Our analyses show that ENA revealed relationships in the data that were
not found by analyses that were based on a traditional coding-and-counting
approach. Through ENA, we were able to identify temporal patterns
between socio-cognitive events in verbal problem-solving protocols.
ENA helped us to (a) model patterns in the temporal co-occurrence
between socio-cognitive events over time, (b) visualize the structure of
those temporal co-occurrences in the form of epistemic networks, (c)
quantify those patterns, (d) statistically compare our two conditions (indi-
vidual and dyadic), and (e) use co-registered network visualizations to
interpret how the patterns we identified differ from one another.
Compared to more traditional analyses based on coding-and-counting,
ENA showed that evaluating evidence was a central epistemic practice
for dyads but not for individual problem solvers. More specifically, eval-
uating evidence was associated with all of the other epistemic practices.
This suggests that collaborating partners argued in a more evidence-
focused manner than individuals did. Dyads referred to hypotheses and
evidence more frequently in temporal proximity, and made more temporal
connections between communicating and scrutinizing in the problem-
solving process.
The outcomes on RQ2 further show that these results can be attributed to
temporality in the data. The pairwise frequency comparisons based on
traditional coding-and-counting (RQ1) showed that evidence evaluation
was the most frequent learning action in case of dyads compared to
individuals. To test whether the frequency of evidence evaluation alone
made evidence evaluation a central epistemic practice for dyads, we
compared our results in RQ1 to an ENA model of data where temporality
information was removed through randomization of the data. The model
with randomized data did not show the same pattern of connections as the
original model, demonstrating that the frequency of evidence evaluation
alone does not explain the connections between learning activities for
dyads. To put it simply: Temporality mattered.
A second significant finding is that correlation-based analyses of coding-
and-counting showed different relationships between learning activities
than ENA captured. A correlation-based analysis did not show a relation-
ship between hypothesis generation and evidence evaluation for dyads,
which was the strongest temporal connection identified by the ENA
model. This is notable because earlier qualitative data analysis on the
same dataset showed that the relationship between hypothesis generation
and evidence evaluation is a particularly important feature of dyadic
conversations in this setting (Csanadi et al. 2016). Thus, the ENA findings
quantify a salient feature of the qualitative data that is not accounted for by
a traditional coding-and-counting correlation analysis. We argue, there-
fore, that these results further demonstrate the power of an analytical
approach that accounts for temporality. The outcomes of the present article
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thus suggest that for collaborative reasoning, temporal models provide a
better account of problem solving than code frequency models.
Finally, what can we conclude from the results about scientific reasoning
in groups in comparison to individuals? The learning activities we inves-
tigated in this study were developed (Csanadi et al. 2015) based on a
theoretical framework on scientific reasoning (Fischer et al. 2014). This

theoretical framework proposed eight activities of scientific reasoning.
However, the framework did not propose a theoretical model with respect
to what patterns of engagement in these activities were more effective than
others. Thus, the work here also represents an initial step toward exploring
patterns with respect to learners’ engagement in such epistemic practices
of scientific reasoning in the context of collaborative and individual
problem solving. The epistemic networks resulting from our study are
quantitative empirical models that describe temporal enactment epistemic
practices of scientific reasoning during problem solving.
In sum, through ENA we were able to identify complex temporal relation-
ships in verbal data. Using ENA to model temporal co-occurrences be-
tween socio-cognitive events allowed us to (a) build quantitative models of
our data, (b) visualize those models in an interpretable manner, and (c)
quantitatively compare models between different groups of learners. This
comparison (d) provided more detail than the traditional coding-and-
counting-based approach in modeling the structure of connections between
socio-cognitive events, and (e) was aligned with the findings from earlier
qualitative analyses of the same data (Csanadi et al. 2016). We thus
suggest that ENA in particular—and models that incorporate the temporal
structure of discourse more generally—should be an important part of the
toolkit of CSCL researchers, and provide a powerful addition to the
widely-used approach of purely frequency-oriented coding-and-counting.

Limitations and conclusions

There are, of course, limitations to this study, as there are in any study.
Four of them are mentioned in the following:
First, this work focused on the analysis of process data, but we did not

include learning outcomes in the analysis. Often in CSCL research, pro-
cess data is used to predict learning outcomes, that is to see how learning
processes moderate the effects of learning conditions and learning out-
comes. Therefore, our findings are limited in that respect that we cannot
say much about how different epistemic network models may or may not
have led to potentially better learning outcomes. Thus, future studies
should more directly address this question.
Second, we could have used more advanced measures that would be based
on a traditional coding-and-counting strategy, for example, hierarchical
modelling. However, our aim was to focus on analyses that are typically
applied in coding-and-counting-based research (specifically ANOVAs and
correlations). To triangulate our analyses, we simulated the results of an a-
temporal analysis by modeling randomized data with ENA. The results led
to similar outcomes as the more traditional coding-and-counting approach:
in ENA, the most frequently-occurring events formed connections in the
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case of the randomized dataset. Thus, despite any limitations of our
coding-and-counting models, we demonstrated that temporality captures
significant connections between socio-cognitive events beyond those
found in a frequency-based analysis.
Third, our ENA-analysis modeled events occurring in direct succession to
one another. However, it might be that other window sizes would capture

different problem-solving processes. Other studies have looked at how to
identify the optimal scope of analysis when analyzing verbal data with
ENA (Csanadi et al. 2017; Ruis et al. 2018).
Fourth, our findings were limited by the fact that we were comparing two
different data collection methods (recordings of discussion versus record-
ings of a think-aloud protocol) as well as different problem-solving con-
ditions (dyadic versus individual). While prior research has shown that
such comparison may not compromise the results in theory (Csanadi et al.
2016; Mullins et al. 2011; Teasley 1995), the differences between ENA
and a more traditional coding-and-counting approach were more pro-
nounced for dyads than for individual problem solvers. There are examples
of analyzing temporality in the context of individual learning (e.g.,
Bannert et al. 2014), but many studies that use temporal patterns focus
on collaborative learning contexts (Jeong 2005; Kapur 2011). Thus, more
studies are needed to see to what extent temporality is less of a factor in
individual problem solving as recorded in think-aloud protocols in com-
parison to dyadic problem solving as captured through discussion.
Despite these limitations, our results suggest that traditional coding-and-
counting-based approaches are limited in their ability to model temporality
in verbal process data. We do not suggest that such coding-and-counting
approaches should be abandoned, because counting frequencies of occur-
rences may reveal important information to a researcher. However, we do
argue that any analysis that aims to understand how learners engage in
activities and how such engagement contributes to learning needs to also
use analytical approaches that account for temporal characteristics of data.
Temporal analyses are not a luxury that CSCL researchers might choose to
enjoy or not; rather, they are an analytical necessity for researchers
interested in generating meaningful analyses of collaborative learning.
Based on our research, we can say that ENA is a powerful means to
perform such analyses.
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31Introduction

32A major goal of research in computer supported collaborative learning (CSCL) is to under-
33stand how to use technology to improve collaborative learning. For example, Bause et al.
34(2018) investigated whether a particular design of a multitouch table that separates a private
35from a joint screen area is more effective for groups working on a problem-solving task than a
36design that does not include a joint working space. Likewise, many empirical studies look at
37whether CSCL scripts evoke different socio-cognitive actions than unscripted CSCL (e.g.,
38Schwaighofer et al. 2017).
39Central to such studies is the analysis of how differently designed learning environments
40impact how students interact during learning. For that purpose, researchers often rely on verbal
41data that are captured during learning, such as transcripts of within-group talk. These data are
42then analyzed to model how different learning conditions impact learners’ actions, such as
43developing explanations or evaluating evidence (Teasley 1995).
44Such analyses are typically based on coding-and-counting (e.g., Vogel and Weinberger
452018). In this approach, a researcher (1) develops a coding scheme to identify different actions
46that occurred during learning; (2) applies that coding scheme to the data corpus; and (3)
47typically counts the frequencies by which learners in different experimental conditions en-
48gaged in these actions. Frequency-based methods of this coding-and-counting-strategy thus
49provide a means for comparing the effects that different conditions have on the learners’ socio-
50cognitive actions.
51Despite its wide adoption in the CSCL community, however, coding-and-counting-based
52analyses as the one just described have been repeatedly criticized in CSCL research (Kapur
532011; Reimann 2009). In particular, critics of such an approach argue that (1) it ignores
54temporality in verbal data, and (2) it does not afford analyzing patterns of learning activities.
55That is, such traditional coding-and-counting-based approaches model the frequency of each
56kind of learner action (each code), but do not provide information about whether and how
57these actions might be related to one another.
58For example, during collaboration, learners often develop questions and expectations that
59guide their interaction with each other and with the learning material. Counting how often each
60learner formulates questions and also counting independently how often each learner refers to
61the learning material tells us nothing about whether the learners have made connections
62between their questions and the learning material over time. We thus argue that using
63traditional coding-and-counting-based techniques as described above is often a suboptimal
64strategy to model learning in verbal data. In many cases, a more appropriate and informative
65approach is to use methods that model temporal relationships between coded socio-cognitive
66actions in verbal data.
67In this article, we compare a traditional coding-and-counting-based analysis of a data
68corpus to epistemic network analysis (ENA; Shaffer et al. 2009; Shaffer 2017), an analysis
69method that models temporality in verbal data. We apply both a typical coding-and-counting
70approach and an ENA analysis on the same data set, and then examine the inferences that can
71be drawn from the two analyses.
72To further investigate the impact of failing to account for temporality in the analysis of
73verbal data from a CSCL environment, we also compare the results of ENA on the original
74data set with the results of ENA on a randomized version of the original dataset. Randomizing
75the order of coded learning actions within each transcript preserves the frequency of occurrence
76of learner’ actions in a verbal protocol, but eliminates temporal information from the original
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77transcripts. Therefore, comparing the original data set to a randomized data provides an
78opportunity to understand more deeply the impact of temporality on the learning activities
79being modelled.

80Engaging in socio-cognitive activities during CSCL: An example

81The data we use to address these questions comes from an experiment in which pre-service
82teachers were asked to reason about a pedagogical problem (Csanadi et al. 2016). In one
83condition, students were asked to discuss the problem in pairs; in the other condition, students
84reflected on the problem individually using a think aloud protocol (e.g., Ericsson and Simon
851980; Fox et al. 2011). Using transcripts of discourse, Csanadi et al. (2016) investigated
86whether and how participants’ engagement in actions of scientific reasoning such as hypoth-
87esizing and evaluating evidence, differed between the two conditions.
88Tables 1 and 2 show two excerpts from this study. In what follows, we will refer to these
89two examples to describe how both traditional coding-and-counting approaches and ENA
90model this data.
91The transcripts from dyadic discussions and individual think-aloud protocols were seg-
92mented into propositional units, and each proposition was coded (Csanadi et al. 2016) using a
93coding scheme developed by Csanadi et al. (2015) based on a heuristic framework of scientific
94reasoning (Fischer et al. 2014). The coding scheme identifies one of eight kinds of epistemic
95actions for each propositional unit:

96(1) Problem Identification (PI): an initial attempt to build an understanding of the problem
97(2) Questioning (Q): statements or questions triggering further inquiry
98(3) Hypothesis Generation (HG): developing explanations of the problem
99(4) Generating Solutions (GS): developing interventions or solution plans
100(5) Evidence Generation (EG): reference to information or lack of information that could
101support a claim
102(6) Evidence Evaluation (EE): evaluating a claim

t1:1 Table 1 Excerpt from a think aloud protocol (individual condition)

t1:2 Line Excerpt from segmented transcript Code

t1:3 1 Well, I would first inform myself, // EE
t1:4 2 what can be the reason, // Q
t1:5 3 that she is not so good at the exams. // EE
t1:6 4 If it can be her learning method, // HG
t1:7 5 or perhaps she learns well // HG
t1:8 6 but then she always has exam-anxiety. // HG
t1:9 7 There can be many reasons for it, // NE
t1:10 8 and one should tell it in the context, // EE
t1:11 9 if there is not anything special. // EE
t1:12 10 The parents say she learns diligently at home… // EE
t1:13 11 I would then look up some books // EE
t1:14 12 and I would write out a couple of things. // EE
t1:15 13 For example, I would recommend her // GS
t1:16 14 that she should have a learning plan for the homework // GS

International Journal of Computer-Supported Collaborative Learning
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103(7) Communicating and Scrutinizing (CS): planned discussions with others (e.g., in order to
104find out further information)
105(8) Drawing Conclusions (DC): concluding outcomes of reasoning

106More specific details of segmentation and coding are discussed in the methods section below.

107Measuring socio-cognitive activities by a traditional
108coding-and-counting approach

109Both traditional coding-and-counting-based approaches and an ENA analysis begin with a
110coding phase. In the coding phase, researchers identify socio-cognitive actions that are relevant
111to the research question at hand. Then, they develop a coding framework to capture those
112actions in the data, and apply the framework to the data. The whole procedure may, in fact,
113include several steps and iterations of those steps (see e.g., Chi 1997; Strijbos et al. 2006;
114Vogel and Weinberger 2018; Shaffer 2017). The coding scheme we used in this experiment is
115described briefly above, and in more detail in the methods section.
116While both traditional coding-and-counting-based analyses and ENA models use coded
117data, they differ with respect to what subsequently is done with the coded data. In typical
118coding-and-counting-based studies, the coding phase is followed by a counting phase, in
119which the researcher chooses units of analysis and computes the code frequency—the rate at
120which a code appears in the data—for each code within the data from each unit of analysis.
121Differences between code frequencies across units of analysis in different conditions are then
122analyzed statistically.
123In our case, we used a multivariate ANOVA to test whether the two conditions (individual
124versus dyadic problem solving) had differential effects on learners’ problem solving. The
125results, which we will present in more detail later, were useful to understand the extent to
126which participants engaged in actions of scientific reasoning, and whether the extent to which
127participants engaged in those actions was different between the two conditions, We could also
128have used more complex inferential methods based on code frequencies: for example,
129mediation analysis, which might test whether engagement in certain activities mediates the

t2:1 Table 2 Excerpt from a dyadic discourse (collaborative condition)

t2:2 Line Excerpt from segmented transcript Code

t2:3 1 A: I think it may rather be that although she learns a lot, // EE
t2:4 2 yet, she learns it in the wrong way. // HG
t2:5 3 B: That she has the wrong learning strategies. // HG
t2:6 4 A: Exactly, she studies in a wrong way. I mean… // HG
t2:7 5 B: That she does not elaborate, // HG
t2:8 6 rather learns by heart. // HG
t2:9 7 A: Exactly, she learns the whole stuff superficially. // HG
t2:10 8 I mean, of course, I can recite something to myself for hours, // EE
t2:11 9 but when I don‘t understand it, // EE
t2:12 10 it won’t stay long in memory. // EE
t2:13 11 B: In that case you could try some counselling with him, // GS
t2:14 12 to find the right learning strategies, // GS
t2:15 13 A: Right.
t2:16 14 B: how she learns best. // GS

Csanadi A. et al.
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130effect of the experimental conditions on learning outcomes, but that was not the goal of this
131study.
132Although traditional coding-and-counting-based methods are often used in CSCL research
133(and we ourselves have used them extensively in the past; e.g., Csanadi et al. 2016; Kollar Q2,
134Fischer, & Slotta, 2007; Stegmann et al. 2012), they have been heavily criticized (Kapur 2011;
135Mercer 2008; Reimann 2009). There are at least two main arguments that have been put
136forward in this respect: First, traditional analyses based on coding-and-counting do not account
137for temporality in verbal data. Second, they do not afford analyzing patterns of learning
138activities in verbal data.
139Traditional coding-and-counting-based studies do not take into account the temporal
140development of socio-cognitive activities (Reimann 2009; Wegerif and Mercer 1997) in the
141sense that every instance of an action, such as hypothesis generation, is added to an overall
142frequency score (see rows “Sum” and “%” on Table 3). By summing each occurrence of the
143action, such analyses assume that each instance of the action contributes in the same way to
144learning outcomes (Chiu and Khoo 2005).
145However, this violates a persistent finding in educational research: there are often differ-
146ences between two instances of the same action (Lämsä et al. 2018; Roschelle and Teasley
1471995; Shaffer 2006). For example, in the discussion presented in Table 2, two learners discuss
148possible reasons (Code “HG”) for the problem of an underperforming student. While Learner
149A generates a very similar hypothesis in both Line 2 and 7, there is a clarification phase in-
150between. During this clarification phase, Learner B reframes the discussion by introducing the
151term “learning strategies,” and in Line 7 Learner A changes her words accordingly. As a result,
152the two instances of hypothesis generation are not the same: the second is explicitly generating
153a hypothesis in the context of a discussion of learning strategies.
154One approach to solving this kind of problem is to use more specifically defined codes,
155such as “general hypothesis generation” versus “hypothesis generation in response to topics
156from the class”. However, this potentially increases the number of codes dramatically, as well
157as the difficultly in coding data and achieving good inter-rater reliability.
158Traditional coding-and-counting-based analyses also do not take into account that learning
159actions often occur in relation to each other throughout verbal protocols. As such analyses
160focus on the occurrence of single actions in verbal data, they do not afford an analysis of their
161co-occurrence throughout the data. For example, in Transcript 1 from Table 3, a traditional
162coding-and-counting-based analysis would identify that hypothesis generation (HG) occurred
163three times and evidence evaluation (EE) occurred seven times, and this difference might be
164relevant to a researcher. However, as the table shows, the hypothesis generation occurs in the
165context of evidence evaluation: for example, in Lines 3 and 4 of Transcript 1.
166Measuring isolated variables as “components” of learning is already a widely recognized
167problem in the literature (Jeong 2005; Klahr and Dunbar 1988; Suthers 2005; Wise and Chiu
1682011). Researchers (Reimann 2009; Shaffer 2017) thus, highlight the need of accounting for
169the connections and patterns of connections among such, in fact, interdependent activities to
170capture “higher-level” entities such as learning. Neglecting the temporal relationships between
171learning activities may pose severe limitations for the analysis and its generalizability with
172respect to learning. For example, a researcher may use code frequencies to show which actions
173are correlated to each other in a discourse. The summed occurrence of hypothesis generation
174(HG) and generating solutions (GS) in Transcript 2 are higher than in Transcript 1. At the same
175time, the sum of evidence evaluation (EE) is lower. If these counts show a systematic tendency
176across multiple transcripts, then a traditional coding-and-counting-based approach might
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177indicate that hypothesis generation (HG) is more strongly associated with generating solutions
178(GS) and negatively correlated with evidence evaluation (EE). Yet, such an analysis would
179miss information of how those activities co-occur within each transcript.
180In contrast to such a traditional coding-and-counting strategy, a consideration of temporal
181co-occurrences can reveal patterns of actions within time- or event-intervals that are not
182apparent at the level of raw code frequencies (Dyke et al. 2012; Shaffer 2017; Siebert-
183Evenstone et al. 2016). Such intervals can be, for example, seconds or minutes, or pairs or
184triplets of propositions. This kind of approach is shown in Table 3, where subsets of event-
185pairs are marked. When co-occurrences are identified as event pairs, hypothesis generation
186(HG) and generating solutions (GS) do not occur together even once. In contrast, a connection
187between hypothesis generation (HG) and evidence evaluation (EE) occurs three times. If these
188patterns recur systematically throughout transcripts, the researcher could conclude that hy-
189pothesis generation (HG) and generating solutions (GS) are not closely related, but hypothesis
190generation (HG) and evidence evaluation (EE) are those socio-cognitive actions that interact
191with one another. More to the point, these results could be in direct contrast with the
192correlational strategy of traditional coding-and-counting-based approaches, where the overall
193frequency of hypothesis generation (HG) and generating solutions (GS) could be correlated
194even though the two socio-cognitive actions are never temporally co-located (see the dilemma
195between “global” vs “local” correlational strategies in Collier et al. 2016; Shaffer Q3& Serlin,
1962004).
197One statistical consequence of not capturing learning-related actions as they develop over
198time and co-occur with each other is a loss of statistical power, in the sense that the original
199data is highly compressed when aggregated to just a few variables. This makes any statistical
200analysis that is concerned with predicting learning outcomes based on learning actions

t3:1 Table 3 A typical coding-and-counting strategy

Note: HG, EE, and GS are mutually exclusive codes assigned to each line (L1, L2…L5) for each transcripts. 1″
indicates occurrence, “0” indicates absence of a certain code. Row “Sum” represents the total while row “%”
represents the proportional frequency of occurrence of each code within the transcript, following a traditional
coding-and-counting-based strategy
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201potentially less sensitive (Shaffer & Serlin, 2004; Kapur 2011). This reduced power could
202further mean that existing relationships between variables may remain undetected by tradi-
203tional quantitative techniques based on coding-and-counting (this phenomenon is
204demonstrated both with real data and in a simulation study in Collier et al. 2016).
205Researchers are also often interested in visualizing the results of an analysis. Frequency
206bars are typically reported in coding-and-counting-based analyses (see Fig. 1), but because
207frequency data does not account for temporality, such bar graphs are not very informative in
208this respect. More generally, traditional coding-and-counting-based approaches do not provide
209the opportunity to visualize how discourse is developing over time (Dyke et al. 2012; Hmelo-
210Silver et al. 2013; Suthers and Medina 2011).
211These limitations of traditional coding-and-counting-bases approaches show that ignoring
212the temporally developing relationships between socio-cognitive actions of learning may affect
213the analysis of verbal data. As noted above, it is true that recoding data or introducing a
214hierarchical coding scheme may be a solution to some limitations of traditional coding-and-
215counting-based analyses, but it is not a general solution in the sense that it does not directly
216address the core problem of representing temporality (and the socio-cognitive effects of
217temporality) in verbal data.
218Thus, we argue that CSCL research should look for and develop further methods for
219analyzing verbal data to address this core problem. Such methods should (1) account for the
220temporal development of learning actions, (2) address the interdependence between learning
221actions, (3) afford more powerful quantitative analyses of learning actions, and (4) visualize
222the dynamics of learning in an insightful manner.

223Beyond traditional coding-and-counting-based analyses: Epistemic
224network analysis as a method to analyze temporal connections
225of learning activities

226CSCL research has developed several methods and tools for the analysis and visual represen-
227tation of verbal data that take temporality information into account. For example, sequential
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Fig. 1 Proportional frequency
(expressed in %) of engagement in
the socio- cognitive activities. *
p < .05, ** p < .01
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228analysis (Cress and Hesse 2013; Jeong 2005; Kapur 2011) recognizes that many actions do not
229occur independently from each other in verbal data. In fact, an action such as hypothesis
230generation may be more likely to be followed by a certain action such as evidence generation
231rather than by another action such as drawing conclusions. The likelihood of such transitions
232between action pairs is called transition probability. Such transition probabilities can define a
233“most likely” pattern or sequence of actions across verbal protocols. This way, sequential
234analysis affords the analysis of activity patterns in the form of sequences.
235Verbal data in CSCL has also been analyzed using process mining (Reimann 2009). Process
236mining is not a single method, but rather an approach for developing models and mining data
237to (a) gain empirical models or to (b) confirm existing models. These models would represent
238processes of learning, such as self-regulation, including actions of, e.g., planning or progress
239monitoring (e.g., Bannert et al. 2014).
240These methods have several limitations, however. First, the number of possible sequences
241of actions is extremely large. As a result, these methods require very large data sets, which are
242not always available (Bakeman and Gottman 1997; Reimann and Yacef 2013). Sec-
243ond, such models are often difficult to interpret, resulting in a set of specific
244sequences of actions—sometimes a quite large number of such sequences—that are
245statistically different between one group and another. Yet, explaining the significance
246of these differences is often a challenge. Moreover, although there are visualizations
247that are used to represent sequential data, such as transition state diagrams, it is
248difficult to compare such representations visually.
249There are also representational tools in CSCL research that can visualize temporal patterns
250of verbal data. For example, CORDTRA (Hmelo-Silver et al. 2011) allows a researcher to
251visually investigate how different activities occur over time in relation to each other. However,
252such visualization tools do not provide a quantitative measure of the resulting differences, and
253do not afford analyzing the systematic temporal relationships of events in a larger corpus of
254data.
255For these reasons, in our investigation we chose to use epistemic network analysis (ENA;
256see Marquart et al. 2018; Shaffer and Ruis 2017; Shaffer et al. 2016; Shaffer 2006), a modeling
257technique that can (1) capture, (2) visualize, (3) quantitatively compare patterns of learning
258activities across conditions, and (4) be used with smaller datasets. ENA allows researchers to
259model temporal co-occurrences between socio-cognitive actions, visualize those co-occur-
260rences, and conduct statistical comparisons between different groups of learners with respect to
261those models.
262The theoretical background of ENA is Epistemic Frame Theory (Shaffer 2017; Shaffer
2632007). Epistemic Frame Theory assumes that learning cannot be reduced to isolated compo-
264nents such as specific actions in the learning process. Rather, learning is the transformation of
265an individual’s epistemic network: a set of relationships that connects skills, knowledge, and
266values that a learner uses to make sense of and take action on the world. This network is
267expressed in discourse and changes over time during the learning process (Shaffer 2012). ENA
268has been used in diverse research settings, including (a) surgery trainees’ operative perfor-
269mance during a simulated procedure (Ruis et al. 2018), (b) gaze coordination during collab-
270orative work (Andrist et al. 2015), (c) communication among health care teams (Sullivan et al.
2712018), and more generally in situations where researchers want to analyze the integration of
272interconnected skills in contrast to the “isolationist”methodological approach that is often used
273in traditional coding-and-counting-based analyses (Arastoopour et al. 2016; Collier et al. 2016;
274Eagan and Hamilton 2018).
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275Like analyses following a traditional coding-and-counting approach, ENA begins with
276verbal data that has been segmented and coded. However, instead of computing the mere
277frequencies of single codes, ENA analyzes the data segment-by-segment to identify if certain
278actions occur either within the same segment or in neighboring segments. (More detailed
279explanations of the mathematics of ENA can be found in Shaffer (2017) as well as in Shaffer
280and Ruis (2017); Siebert-Evenstone et al. (2017); Shaffer et al. (2016).
281The researcher can therefore identify how far the actions she is interested in may fall from
282each other in the discourse. For example, in Table 3, action pairs were marked for actions in
283one-step-distance from each other. ENA can analyze connections with different scopes,
284however: for example, activities that fall within a window of any size in the data, such as
285two, or five, or eight steps from each other (Siebert-Evenstone et al. 2016). Table 3 shows a
286window size of two (each event is analyzed in the context of the event that immediately
287preceded it), meaning that ENA counts occurrences of pairs of adjacent events. If two events
288occur repeatedly over time in the discourse, the connection between these events is stronger in
289the ENA model.
290After analyzing all neighboring segments in a verbal protocol, a researcher might find
291several connections that organize themselves into a pattern: that is, into an epistemic network
292where some pairs of events are strongly connected (they co-occurred more often in the
293discourse) while others are weaker (they co-occurred less often in the discourse). Epistemic
294networks can be aggregated into mean networks across individuals, such as the mean network
295of all individual problem solvers or the mean network of all dyadic problem solvers in our
296data. And networks can be compared by subtracting their connection weights in one network
297from the weights in the other. The resulting subtracted network represents the differences
298between two epistemic networks. So, for example, by subtracting the mean network for
299individual problem solvers from the mean network for dyads in our data, it is possible to
300visualize and quantify the differences between collaborative and individual reasoning.
301ENA also provides a method for performing statistical tests on epistemic networks. First, a
302high-dimensional space is generated where the dimensions represent each pair of possible
303connections within the networks. Through a dimensional reduction method, that is, single
304value decomposition (Shaffer et al. 2016), the space of networks can be reduced to a simpler,
305one-, or two-dimensional projected ENA space. (See Shaffer et al. 2016 for a more detailed
306explanation of the mathematics; see Arastoopour et al. 2016 and Sullivan, 2018 for examples
307of this kind of analysis). Then the resulting one- or two-dimensional values representing
308different networks in the projected ENA space can be included in further quantitative analysis.
309For example, the networks of dyadic reasoners and those of individual reasoners can be
310compared to see if they the differences between them are statistically significant: that is, if
311dyadic networks are quantitatively different from individual networks.
312A key feature of an ENA model is that networks are visualized using network graphs,
313where nodes correspond to the codes, and edges reflect the relative frequency of co-occur-
314rence, or connection, between two codes. But critically, the positions of the network graph
315nodes are fixed, meaning all networks in a given ENA space have the same node locations. In
316addition, those positions are determined by an optimization routine that minimizes the
317difference, for any given network, between the point that represents that given network in
318the projected ENA space and the centroid or center of mass of the same network, computed
319from the weights of the connections in the network. In other words, the optimization minimizes
320the difference between the point that represents a network in the projected ENA space and the
321network centroid for every units in the set. Thus, if two learners’ epistemic networks show
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322similar patterns of connections, their centroid values will fall close to each other in the
323projected ENA space (Shaffer et al. 2016).
324Optimizing the position of network nodes in this way creates a co-registration of network
325graphs and projected ENA space from the dimensional reduction. As a result, the positions of
326the network graph nodes—and the connections they define—can be used to interpret the
327dimensions of the projected space and explain the positions of plotted points in the space. This
328makes it possible to conduct quantitative comparisons between two sets of networks in the
329projected ENA space (in our case, dyadic vs individual networks), and then interpret the
330differences between networks using their corresponding network graphs.

331Research questions

332Following concerns raised in the CSCL literature (e.g, Kapur 2011; Reimann 2009; Shaffer
3332017), we have argued that traditional coding-and-counting-based analyses are limited for in-
334depth quantitative analysis of verbal data, both regarding the analytical process and the
335visualization of verbal data. ENA may add to such purely frequentist approaches as it accounts
336for these limitations. In what follows, we compare these approaches empirically and set the
337following research questions:

338RQ1: Which technique provides the best explanation of group differences with respect to
339learners’ engagement in different learning actions?

340To investigate this question, we analyze to what extent dyads and individuals differ from each
341other with respect to the learning activities they engage in during their problem solving. We
342first conduct a traditional coding-and-counting-based analysis, followed by an ENA analysis,
343and then compare the outcomes of the two approaches. We hypothesize that the results of ENA
344will reveal information that the more traditional coding-and-counting-based approach did not
345capture with respect to the way learners engage in learning activities.

346RQ2: To what extent are the results from RQ1 due to systematic temporal co-occurrences
347between learning actions?

348To investigate this question, we compare the epistemic networks resulting from the analysis of
349RQ1with epistemic networks generated by randomized version of the same data. Randomizing
350within each verbal protocol removes temporality from the data by mixing up the order of coded
351segments. We hypothesize that the ENA results on RQ1will differ from those of RQ2, showing
352that the findings from the ENA analysis in RQ1 cannot be explained by the frequency
353distributions of learning actions, but also reflect the temporality information in the original data.

354Method

355Participants and design

356The data analyzed in this study, the coding procedure and its outcomes come from a previous
357work (Csanadi et al. 2016). In the original study, pre-service teachers (N = 76; 59 female,
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358MAge = 21.22, SDAge = 3.98) solved an educational problem case from their future professional
359field (teaching) in one of two between-subject conditions: either as individuals (N = 16) or as
360dyads (N = 30 dyads).

361Data

362In Csanadi et al. (2016), verbal problem-solving data (think aloud data from participants in the
363individual condition and discourse data of participants in the dyadic condition) were audio-
364recorded and transcribed.
365The transcriptions were segmented into propositional units (Coder 1 agreed on 85.09% of
366the segments of Coder 2; Coder 2 agreed on 79.73% of the segments of Coder 1; Strijbos et al.
3672006). Coding was based on a coding scheme developed by Csanadi et al. (2015), following a
368typology of epistemic actions, that is, epistemic processes of scientific reasoning that was
369suggested by Fischer et al. (2014). Based on this taxonomy, they distinguished between eight
370different epistemic processes: problem identification (PI), questioning (Q), hypothesis gener-
371ation (HG), generating solutions (GS), evidence generation (EG), evidence evaluation (EE),
372drawing conclusions (DC), and communicating and scrutinizing (CS), as well as non-
373epistemic propositions (NE). It is important to note that the two independent coders often
374found it problematic to distinguish between cases when evidence was used to support a claim
375(EE) or was used for another epistemic purpose (EG). As a result, the two coders had most of
376their misclassification between evidence evaluation (EE) and evidence generation (EG). Thus,
377they merged these two codes into one: evidence evaluation (EE). Using this scheme, two raters
378independently coded 10 % of the material was randomly chosen and both coders indepen-
379dently applied the coding scheme to the material (κ = 0.68). Afterwards, a single rater coded
380the remaining data.
381To answer RQ2, in the present study we created a randomized dataset of the previously
382segmented propositions (see Table 4) within each dyad and individual participant.
383Table 4 illustrates our randomized dataset. This table contains the randomized version of the
384first six lines from Table 1. Note, that the frequencies of codes in case of Table 1 and Table 4
385are the same. Yet, in Table 1, the codes follow each other in the temporal order of their
386occurrence, while in Table 4, such temporality does not exist.

387Analysis

388To answer RQ1, we applied five frequency-based inferential statistics (MANOVA, ANOVAs,
389Welch-test, Chi-square test, and correlations) and ENA to compare the outcomes of the two
390methodological approaches.

t4:1 Table 4 Example of the randomized dataset

t4:2 Line Excerpt from segmented transcript Code

t4:3 4 If it can be her learning method, // HG
t4:4 1 Well, I would first inform myself, // EE
t4:5 6 but then she always has exam-anxiety. // HG
t4:6 2 what can be the reason, // Q
t4:7 5 or perhaps she learns well // HG
t4:8 3 that she is not so good at the exams. // EE

International Journal of Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9288_Proof# 1 - 07/11/2018



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

391For the ENA model, we used a window size of two. We chose a dimensional reduction that
392maximized the difference between the mean of units (participants or dyads) in the two
393conditions. The value of each network in the projected ENA space (described above) was
394included as dependent variable to compare dyadic and individual epistemic networks of
395scientific reasoning. Mean networks were computed for both the dyadic and the individual
396reasoning conditions, respectively, and we constructed a subtracted network by subtracting the
397mean connection strengths for participants in the dyadic condition from the mean connection
398strengths for participants in the individual conditions. The resulting subtracted network
399showed what connections contributed to the differences between the two conditions.
400To answer RQ2, we used the randomized dataset selecting the same parameters and
401performing the same ENA analysis as in RQ1. We compared the outcomes of this analysis
402with the ENA results from RQ1.

403Results

404RQ1: Which technique provides the best explanation of group differences with respect to
405learners’ engagement in different socio-cognitive actions?

406Coding-and-counting

407We compared the frequency of engagement in the different socio-cognitive actions across the
408two conditions (collaborative vs. individual). The difference in frequency of events between
409the two conditions was statistically significant overall (Pillai’s trace = .40, F(5,40) = 5.26,
410p < .001, partial η2 = .40). Subsequent univariate comparisons showed that participation in
411the collaborative condition resulted in a significantly higher engagement in hypothesis gener-
412ation (M = .24, SD = .09) in contrast to the individual condition (M = .17, SD = .11), F(1, 44) =
4136.06, p < .05, partial η2 = .12. Also, engagement for dyads was higher in evidence evaluation
414(M = .33, SD = .11) in contrast to the individual condition (M = .26, SD = .13) F(1, 44) = 4.28,
415p < .05, partial η2 = .09. Similarly, the odds to engage in drawing conclusions were 5.43 times
416higher for the collaborative than for the individual condition, χ2(1) = 4.51, p < .05. At the same
417time, collaboration led to a significantly lower engagement in generating solutions (M = .29,
418SD = .13) in comparison to the individual condition (M = .45, SD = .24), Welch’s F(1, 19.79) =
4196.56, p < .05, partial η2 = .17.
420We also correlated the frequency of epistemic processes within each condition. In the dyadic
421condition, generating solutions was negatively correlated with evidence evaluation (r = −.65,
422p < .001) and hypothesis generation (r = −.43, p < .05), and problem identificationwas negatively
423correlated with communicating and scrutinizing (r = −.38, p < .05). In the individual condition,
424generating solutions was negatively correlated with evidence evaluation (r = −.87, p < .0001),
425hypothesis generation (r = −.70, p < .01) and non-epistemic activities (r = −.50, p < .05). Problem
426identification and non-epistemic activities were positively correlated (r = .52, p < .05).

427ENA Q4

428As described above, we compared dyadic and individual networks. The mean centroid value
429for individuals’ epistemic networks (M = .21, SD = .32) was significantly different from the
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430mean centroid value for dyads’ epistemic networks (M = −.11, SD = .21, t(44) = 3.65, p < .01,
431d = 1.32). So, as with the traditional coding-and-counting approach, there were differences
432between individuals and dyads.
433However, the mean network graphs for both groups (Fig. 2) showed different relationships
434among epistemic practices than the traditional coding-and-counting-based analytical approach.
435For dyadic conversations, evidence evaluation was central to the problem solving process: it
436formed connections with hypothesis generation, communicating and scrutinizing, generating
437solutions and non-epistemic propositions. In case of the more traditional coding-and-counting-
438based strategy, in contrast, only one of these four connections was visible: between evidence
439evaluation and generating solutions. Furthermore, while the correlation analysis indicated a
440strong negative association between evidence evaluation and generating solutions overall,
441ENA showed that there was temporal co-occurrence between the two (Fig. 2). Finally, while
442correlations indicated that communicating and scrutinizing is negatively correlated with
443problem identification, ENA showed temporal co-occurrence between communicating and
444scrutinizing and evidence evaluation.
445In the case of individuals, ENA showed that evidence evaluation was strongly connected to
446hypothesis generation and generating solutions. But in contrast with the dyadic condition,
447individual networks did not have a clear central node. Rather, each of the three most frequent
448(Fig. 2) epistemic practices were connected to each other. In the case of individual problem
449solvers, the more traditional coding-and-counting-based analysis identified relationships be-
450tween non-epistemic propositions and problem identification as well as between non-epistemic
451propositions and generating solutions. However, this coding-and-counting-based strategy did
452not show the connection between hypothesis generation and generating solutions.
453Subtracting individual from dyadic networks revealed that, in comparison to individuals,
454dyadic conversations were strongly characterized by the connections between evidence evalua-
455tion and communicating and scrutinizing as well as between evidence evaluation and hypothesis
456generation. However, these relationships were not significant for the correlational findings from
457the coding-and-counting-based approach. In contrast, connections from solution generation to
458both hypothesis generation and evidence evaluationwere stronger for individuals than for dyads.
459In general, ENA showed that evidence evaluation was more central to the problem solving
460of dyads than individuals. The correlations that we found via the traditional coding-and-
461counting-based approach we used, however, suggested the opposite: evidence evaluation
462was negatively correlated with other epistemic processes.
463On the one hand, the traditional coding-and-counting-based approach and ENA found the
464same activities to be central for each condition: evidence evaluation for dyads and generating

Fig. 2 Epistemic networks of dyadsQ5 (blue, left), individuals (red, right) and the difference between their networks
(center) using the original dataset
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465solutions for individuals. However, our coding-and-counting-based analyses did not show the
466same structure of associations between different epistemic processes, particularly in the case of
467dyads.
468RQ2: To what extent are the results from RQ1 due to systematic temporal co-
469occurrences between learning activities?

470To determine if the epistemic networks resulting from the analysis of RQ1 are due to temporal
471connections between socio-cognitive actions and not merely their frequency distribution in the
472data, we compared epistemic networks resulting from the analysis of RQ1 with epistemic
473networks resulting from the analysis of the randomized dataset.
474The quantitative outcomes with the randomized dataset showed that the mean centroid
475value for the individuals’ epistemic networks (M = .17, SD = .26) still significantly different
476from the mean centroid value for dyads’ epistemic networks (M = −.09, SD = .20), t(44) = 3.35,
477p < .01, 95%, d = 1.15), which prior work suggests is not surprising, as data with differences in
478frequencies of codes will also show differences in connections between codes if the data is
479randomly ordered (Collier et al. 2016).
480However, the mean epistemic networks from the two conditions in the randomized data
481(Fig. 3) showed that in both conditions, participants only made connections among the three
482most frequent socio-cognitive activities (hypothesis generation, solution generation and evi-
483dence evaluation: compare to Fig. 1). Thus, dyadic and individual networks showed no
484structural differences from each other. These results were, therefore, in clear contrast with
485the results on the original dataset (Fig. 2) where dyadic and individual networks showed
486different structures of association between epistemic processes. The randomized data set
487suggests that there is no central epistemic practice in either dyadic or individual conditions.
488Finally, the subtracted network model in Fig. 3 consists of only blue lines (representing
489connections for dyads), indicating that ENA identified more connections among the highly
490frequent codes for dyads than for individuals. The results thus show that the epistemic
491networks captured from the analysis of RQ1 cannot be reduced only to the frequency
492distributions of epistemic practices. They reflect temporality information in the original data.

493Discussion

494CSCL research often compares different groups with respect to their learning, including
495quantitative analysis of verbal process data. CSCL researchers often conduct such analyses

Fig. 3 Epistemic networks of dyads (blue, left), individuals (red, right) and the difference between their networks
(center) using the randomized dataset
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496using one or more coding-and-counting strategies, such as summarizing frequencies of
497occurrences, and conducting ANOVAs or correlational analyses (e.g., Vogel and
498Weinberger 2018). However, using such traditional coding-and-counting-based tech-
499niques is often a suboptimal choice because it does not account for temporality in
500verbal data (Reimann 2009).
501The present work aimed to (a) summarize the main limitations of traditional coding-and-
502counting-based approaches, (b) survey methodological solutions that account for temporality,
503and (c) empirically test ENA as a methodological addition to traditional coding-and-counting-
504based analyses to identify temporal structure of relationships between codes in learning
505activities.
506Our analyses show that ENA revealed relationships in the data that were not found
507by analyses that were based on a traditional coding-and-counting approach. Through
508ENA, we were able to identify temporal patterns between socio-cognitive events in
509verbal problem-solving protocols. ENA helped us to (a) model patterns in the tem-
510poral co-occurrence between socio-cognitive events over time, (b) visualize the struc-
511ture of those temporal co-occurrences in the form of epistemic networks, (c) quantify
512those patterns, (d) statistically compare our two conditions (individual and dyadic),
513and (e) use co-registered network visualizations to interpret how the patterns we
514identified differ from one another.
515Compared to more traditional analyses based on coding-and-counting, ENA showed that
516evaluating evidence was a central epistemic practice for dyads but not for individual problem
517solvers. More specifically, evaluating evidence was associated with all of the other epistemic
518practices. This suggests that collaborating partners argued in a more evidence-focused manner
519than individuals did. Dyads referred to hypotheses and evidence more frequently in temporal
520proximity, and made more temporal connections between communicating and scrutinizing in
521the problem-solving process.
522The outcomes on RQ2 further show that these results can be attributed to tempo-
523rality in the data. The pairwise frequency comparisons based on traditional coding-
524and-counting (RQ1) showed that evidence evaluation was the most frequent learning
525action in case of dyads compared to individuals. To test whether the frequency of
526evidence evaluation alone made evidence evaluation a central epistemic practice for
527dyads, we compared our results in RQ1 to an ENA model of data where temporality
528information was removed through randomization of the data. The model with ran-
529domized data did not show the same pattern of connections as the original model,
530demonstrating that the frequency of evidence evaluation alone does not explain the
531connections between learning activities for dyads. To put it simply: Temporality
532mattered.
533A second significant finding is that correlation-based analyses of coding-and-
534counting showed different relationships between learning activities than ENA cap-
535tured. A correlation-based analysis did not show a relationship between hypothesis
536generation and evidence evaluation for dyads, which was the strongest temporal
537connection identified by the ENA model. This is notable because earlier qualitative
538data analysis on the same dataset showed that the relationship between hypothesis
539generation and evidence evaluation is a particularly important feature of dyadic
540conversations in this setting (Csanadi et al. 2016). Thus, the ENA findings quantify
541a salient feature of the qualitative data that is not accounted for by a traditional
542coding-and-counting correlation analysis. We argue, therefore, that these results further
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543demonstrate the power of an analytical approach that accounts for temporality. The
544outcomes of the present article thus suggest that for collaborative reasoning, temporal
545models provide a better account of problem solving than code frequency models.
546Finally, what can we conclude from the results about scientific reasoning in groups in
547comparison to individuals? The learning activities we investigated in this study were devel-
548oped (Csanadi et al. 2015) based on a theoretical framework on scientific reasoning (Fischer
549et al. 2014). This theoretical framework proposed eight activities of scientific reasoning.
550However, the framework did not propose a theoretical model with respect to what patterns
551of engagement in these activities were more effective than others. Thus, the work here also
552represents an initial step toward exploring patterns with respect to learners’ engagement in
553such epistemic practices of scientific reasoning in the context of collaborative and individual
554problem solving. The epistemic networks resulting from our study are quantitative empirical
555models that describe temporal enactment epistemic practices of scientific reasoning during
556problem solving.
557In sum, through ENA we were able to identify complex temporal relationships in verbal
558data. Using ENA to model temporal co-occurrences between socio-cognitive events allowed
559us to (a) build quantitative models of our data, (b) visualize those models in an interpretable
560manner, and (c) quantitatively compare models between different groups of learners. This
561comparison (d) provided more detail than the traditional coding-and-counting-based approach
562in modeling the structure of connections between socio-cognitive events, and (e) was aligned
563with the findings from earlier qualitative analyses of the same data (Csanadi et al. 2016). We
564thus suggest that ENA in particular—and models that incorporate the temporal structure of
565discourse more generally—should be an important part of the toolkit of CSCL researchers, and
566provide a powerful addition to the widely-used approach of purely frequency-oriented coding-
567and-counting.

568Limitations and conclusions

569There are, of course, limitations to this study, as there are in any study. Four of them are
570mentioned in the following:
571First, this work focused on the analysis of process data, but we did not include learning
572outcomes in the analysis. Often in CSCL research, process data is used to predict
573learning outcomes, that is to see how learning processes moderate the effects of
574learning conditions and learning outcomes. Therefore, our findings are limited in that
575respect that we cannot say much about how different epistemic network models may
576or may not have led to potentially better learning outcomes. Thus, future studies
577should more directly address this question.
578Second, we could have used more advanced measures that would be based on a traditional
579coding-and-counting strategy, for example, hierarchical modelling. However, our aim was to
580focus on analyses that are typically applied in coding-and-counting-based research (specifically
581ANOVAs and correlations). To triangulate our analyses, we simulated the results of an a-
582temporal analysis by modeling randomized data with ENA. The results led to similar outcomes
583as the more traditional coding-and-counting approach: in ENA, the most frequently-occurring
584events formed connections in the case of the randomized dataset. Thus, despite any limitations
585of our coding-and-counting models, we demonstrated that temporality captures significant
586connections between socio-cognitive events beyond those found in a frequency-based analysis.
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587Third, our ENA-analysis modeled events occurring in direct succession to one another.
588However, it might be that other window sizes would capture different problem-solving
589processes. Other studies have looked at how to identify the optimal scope of analysis when
590analyzing verbal data with ENA (Csanadi et al. 2017; Ruis et al. 2018).
591Fourth, our findings were limited by the fact that we were comparing two different data
592collection methods (recordings of discussion versus recordings of a think-aloud protocol) as
593well as different problem-solving conditions (dyadic versus individual). While prior research
594has shown that such comparison may not compromise the results in theory (Csanadi et al.
5952016; Mullins et al. 2011; Teasley 1995), the differences between ENA and a more traditional
596coding-and-counting approach were more pronounced for dyads than for individual problem
597solvers. There are examples of analyzing temporality in the context of individual learning (e.g.,
598Bannert et al. 2014), but many studies that use temporal patterns focus on collaborative
599learning contexts (Jeong 2005; Kapur 2011). Thus, more studies are needed to see to what
600extent temporality is less of a factor in individual problem solving as recorded in think-aloud
601protocols in comparison to dyadic problem solving as captured through discussion.
602Despite these limitations, our results suggest that traditional coding-and-counting-based
603approaches are limited in their ability to model temporality in verbal process data. We do not
604suggest that such coding-and-counting approaches should be abandoned, because counting
605frequencies of occurrences may reveal important information to a researcher. However, we do
606argue that any analysis that aims to understand how learners engage in activities and how such
607engagement contributes to learning needs to also use analytical approaches that account for
608temporal characteristics of data. Temporal analyses are not a luxury that CSCL researchers
609might choose to enjoy or not; rather, they are an analytical necessity for researchers interested
610in generating meaningful analyses of collaborative learning. Based on our research, we can say
611that ENA is a powerful means to perform such analyses.
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