
EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

1
2

4Supporting collaborative learning and problem-solving
5in a constraint-based CSCL environment
6for UML class diagrams

7Nilufar Baghaei & Antonija Mitrovic & Warwick Irwin

8Received: 12 March 2007 /Accepted: 16 July 2007
9# International Society of the Learning Sciences, Inc.; Springer Science + Business Media, LLC 2007

12Abstract We present COLLECT-UML, a constraint-based intelligent tutoring system (ITS)
13that teaches object-oriented analysis and design using Unified Modelling Language (UML).
14UML is easily the most popular object-oriented modelling technology in current practice.
15While teaching how to design UML class diagrams, COLLECT-UML also provides
16feedback on collaboration. Being one of constraint-based tutors, COLLECT-UML
17represents the domain knowledge as a set of constraints. However, it is the first system
18to also represent a higher-level skill such as collaboration using the same formalism. We
19started by developing a single-user ITS that supported students in learning UML class
20diagrams. The system was evaluated in a real classroom, and the results showed that
21students’ performance increased significantly. In this paper, we present our experiences in
22extending the system to provide support for collaboration as well as domain-level support.
23We describe the architecture, interface and support for collaboration in the new, multi-user
24system. The effectiveness of the system has been evaluated in two studies. In addition to
25improved problem-solving skills, the participants both acquired declarative knowledge
26about effective collaboration and did collaborate more effectively. The participants have
27enjoyed working with the system and found it a valuable asset to their learning.

28Keywords Collaboration support . Computer supported collaborative learning .

29Constraint-based modelling . Evaluation . Intelligent tutoring system .

30Problem-solving support . UML class diagrams

Computer-Supported Collaborative Learning
DOI 10.1007/s11412-007-9018-0

N. Baghaei (*) : A. Mitrovic :W. Irwin
Department of Computer Science and Software Engineering, University of Canterbury,
Private Bag 4800, Christchurch, New Zealand
e-mail: nilufar.baghaei@gmail.com

A. Mitrovic
e-mail: tanja@cosc.canterbury.ac.nz

W. Irwin
e-mail: w.irwin@cosc.canterbury.ac.nz

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

32Introduction

33Web-based collaborative learning is becoming an increasingly popular educational paradigm as
34more students who are working or are geographically isolated engage in education. As such,
35when students do not meet face to face with their peers and teachers the support for
36collaboration becomes extremely important (Constantino-Gonzalez and Suthers 2002).
37In the last decade, many researchers have contributed to the development of computer-
38supported collaborative learning (CSCL) and advantages of collaborative learning over
39individualized learning have been identified (Inaba and Mizoguchi 2004). Some of the
40particular benefits of collaborative problem-solving include: encouraging students to
41verbalize their thinking; encouraging students to work together, ask questions, explain and
42justify their opinions; increasing students’ responsibility for their own learning; increasing
43the possibility of students solving or examining problems in a variety of ways; and
44encouraging them to elaborate and reflect upon their knowledge (Soller 2001; Webb et al.
451995). These benefits, however, are only achieved by active and well-functioning learning
46teams (Jarboe 1996). Several systems for collaborative learning have been developed, but
47the concept of supporting peer-to-peer interaction in CSCL systems is still in its infancy.
48Different strategies for computationally supporting online collaborative learning have been
49proposed and used, but more studies are needed to examine the utility of these techniques
50(Jerman et al. 2001).
51This paper presents an intelligent tutoring system, the goal of which is to support the
52acquisition of both problem-solving skills and collaboration skills. We have developed a
53constraint-based problem-solving environment in which students construct UML class
54diagrams that satisfy a given set of requirements. It assists students during problem-solving
55and guides them towards the correct solution by providing feedback. The system is
56designed as a complement to classroom teaching and when providing assistance, it assumes
57that the students are already familiar with the fundamentals of UML.
58We started by developing a single-user version. Next, we extended the system to support
59groups of students solving problems collaboratively. All constraint-based tutors developed
60so far support individual learning, but COLLECT-UML is the first to add support for
61collaborative learning as well. The system provides feedback on both collaboration issues
62(using the collaboration model, represented as a set of meta-constraints) and task-oriented
63issues (using the domain model, represented as a set of syntax and semantic constraints).
64We start with a brief overview of related work in “Related work.” “Single-user version
65of COLLECT-UML” presents the basic features of the single-user version of COLLECT-
66UML. The architecture of the collaborative version of the system is discussed in “The
67architecture of COLLECT-UML,” while the following section presents the student interface
68and justifies the design decisions made. “Modeling collaboration” describes the
69collaborative model, which has been implemented as a set of meta-constraints. In
70“Evaluation,” we present the results of two evaluation studies performed. “Conclusions”
71are given in the last section.

72Related work

73The CSCL systems can be categorized into three main types in the context of the
74collaboration support (Jerman et al. 2001). The first category includes systems that reflect
75actions and make the students aware of the participants’ activities. Increasing awareness

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

76about such actions could help students maintain a representation of other team members’
77activities and can considerably influence the collaboration (Plaisant et al. 1999). The
78systems in the second category monitor the state of interactions; some of them aggregate
79the interaction data into a set of high-level indicators and display them to the participants
80(e.g., Sharlok II [Ogata et al. 2000]), while others internally compare the current state of
81interaction to a model of ideal interaction, but do not expose this information to the users
82(e.g., EPSILON [Soller and Lesgold 2000]). Finally, the third class of systems offer
83feedback on collaboration. The coach in these systems plays a role similar to that of a
84teacher in a collaborative-learning classroom. The systems can be categorized by the nature
85of the information in their models, and if they provide feedback on strictly collaboration
86issues or both collaboration and task-oriented issues (Jerman et al. 2001). Examples of the
87systems focusing on the social aspects include Group Leader Tutor (McManus and Aiken
881995) and DEGREE (Barros and Verdejo 2000), while examples of systems addressing
89both social and task-oriented aspects of group learning are COLER (Constantino-Gonzalez
90et al. 2003) and LeCS (Rosatelli et al. 2000).
91Although many tutorials, textbooks and other resources on UML are available, we are
92not aware of any attempt to develop a CSCL environment for UML modeling. However,
93there has been an attempt (Soller and Lesgold 2000) at developing a collaborative learning
94environment for OO design problems using Object Modeling Technique (OMT), a
95precursor of UML. EPSILON monitors group members’ communication patterns and
96problem solving actions in order to identify situations in which students effectively share
97new knowledge with their peers while solving OO design problems. The system does not
98evaluate the OMT diagrams and an instructor or intelligent coach’s assistance is needed in
99mediating group knowledge sharing activities.

100Existing approaches to analyzing the collaborative learning interaction

101Analyzing the collaborative learning process requires a fine-grained sequential analysis of
102the group interaction in the context of the learning goals. The following describes five
103different computational approaches available in the literature for performing such analysis
104(Soller and Lesgold 2000).

105& Finite state machines: McManus and Aiken’s (1995) Group Leader system compares
106sequences of students’ conversation acts to those allowable in four-finite-state machines
107developed to monitor discussions about comments, requests, promises, and debates.
108The Group Leader analyzes sequences of conversation acts, and provides feedback on
109the students’ trust, leadership, creative controversy, and communication skills. For
110instance, the system might note a student’s limited use of sentence openers from the
111creative controversy category, and recommend the student to use them.
112& Rule learners: Katz et al. (1999) developed two rule-learning systems, String Rule
113Learner and Grammar Learner that learn patterns of conversation acts from dialog
114segments that target specific pedagogical goals. The rule learners were challenged to
115find patterns in the hand-coded dialogs between expert technicians and students
116learning electronics troubleshooting skills. The conversations took place within the
117SHERLOCK 2 environment for electronics troubleshooting.
118& Decision trees and plan recognition: COLER (Constantino-Gonzales Q1and Suther 2000)
119coaches students as they collaboratively learn entity-relationship modeling. Decision
120trees that account for both task-based and conversational interaction are used to
121dynamically give feedback to the group.

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

122& Hidden Markov models: EPSILON (Soller and Lesgold 2000) monitors group
123members’ communication patterns and problem solving actions in order to identify
124(using machine learning techniques) situations in which students effectively share new
125knowledge with their peers while solving object-oriented design problems. The system
126first logs data describing the students’ speech acts (e.g., request opinion, suggest, and
127apologise) and actions (e.g., Student 3 created a new class). It then collects examples of
128effective and ineffective knowledge sharing and constructs two hidden Markov models
129that describe the students’ interaction in these two cases. A knowledge sharing example
130is considered effective if one or more students learn the newly shared knowledge (as
131shown by a difference in pre-/post-test performance), and ineffective otherwise. The
132system dynamically assesses a group’s interaction in the context of the constructed
133models, and decides when and why the students are having trouble learning the new
134concepts.

135We propose meta-constraints as an effective way of modeling collaboration, as described
136in detail later in this paper. COLLECT-UML is one of the rare systems to provide both
137domain-level feedback and feedback on collaboration. LeCS (Rosatelli et al. 2000) is
138another CSCL system that provides both domain-level feedback and collaboration-based
139feedback. It is a web-based collaborative case study system that can be applied to any
140domain in which the learning from case studies method is used. The system provides a
141solution tree, so that the students can visualize the building up of their solution. However,
142there are several limitations in LeCS: the sentence openers are only intended to facilitate
143discussion and are not analyzed by the system; the individual work is not assessed, it is
144only used to generate the solution tree; evaluation of the case study solutions is the task of
145the case instructor; the domain knowledge concerning the case study is very simple; the
146information obtained from the chat and text area are not examined and the feedback on
147collaboration only captures participation and timing.

148Single-user version of COLLECT-UML

149Constraint-based tutors are Intelligent Tutoring Systems (ITS) that use constraint-based
150modelling (CBM) (Ohlsson 1994) to generate domain and student models. These tutors
151have been proven to provide significant learning gains for students in a variety of
152instructional domains. As is the case with other ITSs (Brusilovsky and Peylo 2003),
153constraint-based tutors are problem-solving environments; in order to provide individual-
154ized instruction, they diagnose students’ actions and maintain student models, which are
155then used to provide individualized problem-solving support and generate appropriate
156pedagogical decisions. Constraint-based tutors have been developed in domains such as
157SQL (the database query language) (Mitrovic 1998, 2003; Mitrovic and Ohlsson 1999),
158database modeling (Suraweera and Mitrovic 2002, 2004), data normalization (Mitrovic
1592002, 2005), punctuation (Mayo and Mitrovic 2001) and English vocabulary (Martin and
160Mitrovic 2003). All three database tutors were developed as problem-solving environments
161for tertiary students (Mitrovic et al. 2004), but the two language tutors are aimed at
162elementary school children. Students solve problems presented to them with the assistance
163of feedback from the system.
164The domain that COLLECT-UML teaches is object-oriented (OO) analysis and design
165using the Unified Modelling Language (UML). An OO approach to software development
166is now commonly used (Sommerville 2004), and learning how to develop good quality OO

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

167software is a core topic in Computer Science and Software Engineering curricula. OO
168systems consist of classes (with structure and behavior), and relationships between them.
169Relationships have multiplicity and names can be of different types (association,
170aggregation, composition, inheritance or dependency). In OO analysis and design, these
171structures exist independently of any programming language, and consequently many
172notational systems have been developed for representing OO models without the need for
173source code. UML is the predominant notation in use today.
174UML consists of many types of diagrams, but class diagrams are the most fundamental
175for OO modeling, as they describe the static structure of an OO system: its classes and
176relationships. For readers unfamiliar with OO or UML, class diagrams can be viewed as
177conceptually akin to the entity-relationship diagrams used for data modeling, with support
178for OO features such as inheritance and methods (Booch et al. 1999).
179OO analysis and design can be a very complex task, as it requires sound knowledge of
180requirements analysis, design and UML. The text of the problem is often ambiguous and
181incomplete, and students need a lot of experience to be successful in analysis. UML is a
182complex language, and students have many problems mastering it. Furthermore, UML
183modeling, like other design tasks, is not a well-defined process. There is no single best
184solution for a problem, and often there are several alternative solutions for the same
185requirements. UML is also suitable for discussion due to its open-ended nature.
186COLLECT-UML concentrates on teaching students how to construct a UML class
187diagram to represent the OO concepts present in informal textual descriptions of software
188requirements. This type of exercise has been used successfully for several years in our
189introductory software engineering course, with the support of human tutors. The system
190was designed to supplement the existing teaching programme by presenting additional
191problems and providing automated tutoring.
192At the beginning of interaction, a student is required to enter his/her name, which is
193necessary in order to establish a session. The session manager requires the student modeler
194to retrieve the model for the student, if there is one, or to create a new model for a new
195student. Each action a student performs is sent to the session manager, as it has to link it to
196the appropriate session and store it in the student’s log. Then, the action is sent to the
197pedagogical module. If the submitted action is a solution to the current problem, the student
198modeler diagnoses the solution, updates the student model, and sends the result of the
199diagnosis back to the pedagogical module, which generates appropriate feedback.
200Students interact with COLLECT-UML via its interface (Fig. 1) to view problems,
201construct UML class diagrams, and view feedback. The top pane contains buttons that
202allow the student to select a problem, view the history of the session, inspect his/her student
203model, ask for help, or print the solution. The central part is a Java applet, which shows the
204problem text and provides the UML modelling workspace. Feedback is presented on the
205right, while the bottom part allows the student to submit solutions.
206The interface is not purely a communication medium: it also serves as a means of
207supporting problem solving. The interface provides information about the domain of study
208as it contains a drawing bar with UML constructs. Students can therefore remind
209themselves of the basic building blocks to use when drawing UML diagrams. In order to
210draw a UML diagram, the student selects the appropriate drawing tool from the drawing
211toolbar and then positions the cursor on the desired place within the drawing area.
212COLLECT-UML contains an ideal solution for each problem, which is compared to the
213student’s solution according to the system’s domain knowledge, represented as a set of
214constraints (Ohlsson 1994). The system’s domain model contains a set of 133 constraints
215defining the basic domain principles, a set of problems and their solutions (Baghaei et al.

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

2162006). Although there is only one solution stored for each problem, the system allows for
217alternative ways of solving a problem, as there are constraints that check for equivalent
218constructs between the student solution and the stored solution. In order to develop
219constraints, we studied material in textbooks (e.g., Fowler 2004) and also used our own
220experience in teaching UML and OO analysis and design.
221Figure 2 illustrates a constraint from the UML domain. The relevance condition
222identifies a subclass in the ideal solution (IS), and then checks whether the student’s
223solution (SS) contains the same class. The student’s solution is correct if the satisfaction
224condition is met, when the matching class is a subclass of another class. The constraint also
225contains a message that would be given to the student if the constraint is violated. The last
226two elements of the constraint specify that it covers some aspects of specialization/
227generalization, and also identifies the class to which the constraint was applied.
228The system was evaluated in a real classroom and the results show that students’
229performance increased significantly and they enjoyed the user-friendliness and self-learn
230capability of the system. For details on the architecture, functionality and the evaluation
231studies of the single-user version please refer to Baghaei and Mitrovic (2005) and Baghaei
232et al. (2005, 2006).

Fig. 1 Single-user version of COLLECT-UML interface

(161
 "Check whether you have defined all required subclasses. Some
 subclasses are missing."
 (and (match IS SUBCLASSES (?* "@" ?tag ?*))
 (match SS CLASSES (?* "@" ?tag ?*)))
 (match SS SUBCLASSES (?* "@" ?tag ?*))
 "specialisation/generalisation"
 (?tag))

Fig. 2 Example of a domain
constraint

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

233The architecture of COLLECT-UML

234The collaborative version of the system (Baghaei and Mitrovic 2006) is designed for
235sessions in which students first solve problems individually and then join into small groups
236to create group solutions. The system provides support for both phases: during the
237individual phase, it provides feedback on each individual’s solution, while in the group
238phase it comments on the group solution, comparing it to the solutions of all members of
239the group and at the same time providing feedback on collaboration.
240The collaborative teaching strategy used in COLLECT-UML is based on the socio-
241cognitive conflict theory (Doise and Mugny 1984). According to this theory, social
242interaction is constructive only if it creates a confrontation between students’ divergent
243solutions. The system, therefore, tries to create the conditions necessary for effective
244conflict by identifying the differences between the group solution and individual solutions,
245making the students aware of the differences and asking them to resolve the conflicts in
246their solutions, and request and give explanations. There are other CSCL environments in
247the literature based on socio-cognitive conflict theory, e.g., COLER (Constantino-Gonzalez
248et al. 2003).
249The system’s architecture is illustrated in Fig. 3. COLLECT-UML is a Web-enabled
250system and its interface is delivered via a Web browser. The application server consists of a
251session manager that manages sessions and student logs, a student modeler that creates and
252maintains student models for individual users, the constraint set, a pedagogical module, and
253a group modeler, responsible for creating and maintaining group models. The pedagogical
254module uses both the student model and the collaboration model in order to generate
255pedagogical actions. The student model records the history of usage for each constraint
256(both for domain constraints and the constraints from the collaboration model), while the

Fig. 3 The architecture of COLLECT-UML

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

257group model records the history of group usage for each domain constraint. The system is
258implemented in WETAS (Martin and Mitrovic 2002, 2003), a constraint-based authoring
259shell, which provides all tutoring functions such as intelligent analysis of students’
260solutions, problem/feedback selection and session management. WETAS itself is
261implemented in Allegro Common Lisp, which provides a development environment with
262an integrated Web Server (AllegroServe 2006).

263The student interface

264The student interface is shown in Fig. 4. The problem description pane presents a design
265problem that needs to be modelled by a UML class diagram. Students construct their
266individual solutions in the private workspace (right). They use the shared workspace (left)
267to collaboratively construct UML diagrams while communicating via the chat window
268(bottom).
269The private workspace enables students to try their own solutions and think about the
270problem before they start discussing it in the group. The group diagram is initially disabled.
271It is activated after a specified amount of time, and the students can start placing
272components of their solutions in the shared workspace. This may be done by either
273copying/pasting from private diagram or by making new components in the group diagram.
274The private and shared workspaces have been put into split-panes, which would give the

Group Chat Individual Feedback

Copy

Paste

Pen
Get the pen,
each
time you want to
update the group
diagram and
Leave it as soon
as you are done

Fig. 4 COLLECT-UML interface

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

275users the flexibility to resize the areas. The students need to select the components’ names
276from the problem text by highlighting or double-clicking on the words.
277The Group Members panel shows the team mates already connected. Only one student,
278the one who has the pen, can update the shared workspace at a given time. The control
279panel provides two buttons to control this workspace: Get Pen and Leave Pen. Additionally,
280this panel shows the name of the student who has the control of this area.
281The chat area enables students to express their opinions using one of the communication
282categories. When a button is selected, the student has the option of annotating his/her
283selection with a justification. The contents of selected communication categories are
284displayed in the chat area along with any optional justifications. The students need to select
285one of the communication categories before being able to express their opinions.
286While all group members can contribute to the chat area and the group solution, only
287one member of the group (i.e., the group moderator) can submit the group solution (by
288clicking on the Submit Group Answer button). The system provides feedback on the
289individual solutions, as well as on group solutions and collaboration. All feedback
290messages will appear in the frame located on the right-hand side of the interface.
291The domain-level feedback on both individual and group solutions is offered at four
292levels of detail, upon submission of the solution: Simple Feedback, Error flag, Hint and All
293Hints. The first level of feedback simply indicates whether the submitted solution is correct
294or incorrect. The Error flag indicates the type of construct (e.g., class, relationship, method,
295etc.) that contains the error. Hint offers a feedback message generated from the first violated
296constraint. A list of feedback messages on all violated constraints is displayed at the All
297Hints level. In addition, the group moderator has the option of asking for the UML class
298diagram of the complete solution by clicking on Show Full Solution button.
299Initially, when the student begins to work on a problem, the feedback level is set to the
300Simple Feedback level. As a result, the first time a solution is submitted, a simple message
301indicating whether or not the solution is correct is given. This initial level of feedback is
302deliberately low, as to encourage students to solve the problem by themselves. The level of
303feedback is increased incrementally with each submission until the feedback level reaches
304the Hint level. In other words, if the student/group moderator submits the solutions three
305times the feedback level would reach the Hint level, thus incrementally providing more
306detailed messages. The system was designed to behave in this manner to reduce any
307frustrations caused by not knowing how to develop UML diagrams. Automatically
308incrementing the level of feedback is terminated at the Hint level to encourage the student
309to concentrate on one error at a time rather than all the errors in the solution. The system
310also gives the student the freedom to manually select any level of feedback according to
311their needs. This provides a better feeling of control over the system, which may have a
312positive effect on their perception of the system. In the case when there are several violated
313constraints and the level of feedback is different from All hints, the system will generate the
314feedback on the first violated constraint. The constraints are ordered in the knowledge base
315by the human teacher, and that order determines the order in which feedback would be
316given.
317The collaboration-based advice is given to individual students based on the initial
318planning of the problem, content of the chat area, the student’s contributions to the shared
319diagram and the differences between student’s individual solution and the group solution
320being constructed (Table 1). There are four different time intervals the meta-constraints are
321evaluated at, which are described later in this document.
322The Next Problem, Submit Group Answer, and Show Full Solution buttons associated
323with the group diagram can be controlled by the moderator only, but the Group Model

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

324button can be accessed by all the members to inspect their group model (Fig. 5). The group
325model visualizes the group’s knowledge of the main OO concepts being taught (i.e., classes,
326attributes, methods, relationships, and specialization) in terms of skill meters, showing how
327much of the corresponding knowledge they have covered/learned for each concept. It is
328calculated using the number of satisfied constraints and total number of constraints relevant
329to each OO concept. The students can use the Help button (at the top of the individual
330workspace) to get information about UML Modeling, Submit Answer to get feedback on
331their individual solutions and Next problem to move on to a new problem (regardless of the
332problem the group is working on at that point). The students cannot view full solutions in
333the individual workspaces (that option is only available under the shared workspace).
334Viewing the full solution by individual members of the group might stop them from
335thinking about the problem and/or collaborating with the rest of the group member.
336In the following subsections, we justify some of the design decisions we made in
337designing the student interface. We discuss the use of communication categories, the
338importance of turn taking and the inclusion of the private workspace. These justifications
339are based on the findings of previous research conducted on computer-mediated
340collaboration.

t1.1Table 1 Collaboration-based feedback types

Feedback Category Examples of Feedback Messages

You may wish to think about the problem
and construct a UML diagram in your
individual workspace first, before joining
the group discussion.

Encouraging Individual
Thinking

Initial Planning

Encouraging Advanced
Planning

Would you like to introduce yourself to
your teammates and plan the session?

You may wish to explain to other
members why you agree or disagree with
a solution.
You seem to just agree and/or disagree
with other members. You may wish to
challenge others ideas and ask for
explanation and justification.

Use of Communication Categories

Ensure adequate elaboration is provided
in explanations.
Some classes in your individual solution
are missing from the group diagram. You
may wish to share your work by adding
those class(es)/discuss it with other
members.

Comparing Individual Diagrams with
the Group Diagram and vice versa

Some methods in the group diagram are
missing from your individual solution.
You may wish to discuss this with other
members.

Contribution to the Group Diagram You may wish to give explanation and
provide justification each time you make
a change to the shared diagram.

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

341Communication categories

342The use of communication categories structures the students’ conversation and eliminates
343off-task discussions. The structured chat interface with specific sentence openers can
344promote more focus on reflection and the fundamental concepts at stake (Baker et al. 2001).
345The usage of structured dialogue requires extra effort from students in comparison to free-
346form input, as students have to find relevant categories for their statements. Although this
347kind of interaction is slower and more demanding, it structures the data and hence makes it
348easier to analyze interactions between the group members.
349Results from various projects indicate that the use of the structured dialogue “supports
350and increases learners’ task-oriented behavior, leads to more coherence in discussing
351argumentatively the subject matter, promotes reflective interaction, lightens the learners’
352typing load, guides the sequence and the content of the dialogue, and is characterized as an
353adequate pedagogical approach for virtual learning groups” (Gogoulou et al. 2005).
354However, requiring learners to select a communication category before typing the
355remainder of their contribution may tempt them to change the meaning of the contribution
356to fit one of the sentence openers, thus changing the nature of the collaborative interaction.
357Finally, it is to be noted that, besides the gains that learners may achieve through a
358structured dialogue, “this dialogue is also crucial for realizing the benefits of a significant
359meta-analysis of collaborative students, constituting another advantage of a structured
360interface” (Dimitracopoulou 2005).

361Turn taking

362Turn taking is supported in our system by taking and leaving a pen whenever the
363participants want to make a contribution. A study (Rummel and Spada 2005) has integrated

Fig. 5 Open group model

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

364empirical findings from different research approaches to define relevant characteristics of a
365good collaboration, and the authors consider turn-taking as one of those characteristics.
366According to their results, explicitly handing over a turn can be a good way of compensating
367for the reduced possibilities to transmit nonverbal information.
368An implication of providing such a protocol is that deadlocks can be created in cases
369where one partner cannot proceed with problem-solving alone and at the same time refuses
370to pass the control over to the other partners. The advantage, however, is that turn taking
371maintains clear semantics of a participant’s actions and roles in the shared workspace
372(Dimitracopoulou 2005). The lack of providing turn-taking protocol in most of computer-
373mediated collaboration tools is considered to be one of the limitations of such tools (Feidas
374et al. 2001).

375Private workspace

376Providing a well-balanced proportion of individual and joint work phases is considered
377crucial for successful collaboration in a study by Rummel and Spada (2005). The individual
378phase allows each group member to use his/her strengths (in terms of domain knowledge
379and problem-solving skills). This is later followed by a collaborative phase, which includes
380discussions of various opinions thus supporting information exchange.
381Allowing enough time for individual work is of central importance in the case of
382complementary expertise of the collaborating partners. However, recent studies have
383provided evidence that individual work is often neglected in studies on computer-mediated
384collaboration (Hermann et al. 2001). The private workspace also enables students to try
385solutions without feeling they are being watched (Constantino-Gonzalez et al. 2003). The
386collaboration scripts developed in the literature (e.g., Dillenbourg 2003) also includes
387individual activities as well as collective ones, indicating the importance of having an
388individual work phase.

389Modeling collaboration

390Research on learning has demonstrated the usefulness of collaboration for improving
391student’s problem-solving skills. When learning in a collaborative setting, students are
392encouraged to work together, share ideas and their reasoning, ask questions, explain and
393justify their opinions, and elaborate and reflect upon their knowledge (Webb et al. 1995;
394Soller 2001). All of these activities increase students’ responsibility for their own learning
395and open up new ways of solving or examining problems. These benefits, however, are
396only achieved by active and well-functioning learning teams (Jarboe 1996). Simply putting
397students together and giving them a task does not mean that they will collaborate well.
398Collaboration is a skill, and, as any other skill, needs to be taught and practiced to be
399acquired. To work well together, all members need to be active, and need to provide
400encouragement to each other.
401In a recent project, Rummel and Spada (2005) studied the effect of instructional
402approaches on improving collaborative skills in computer-mediated settings. The authors
403concluded that “learning by unguided collaborative problem-solving on a task is much less
404effective than systematic intervention and almost as bad as having no opportunity for
405learning at all.” Students learning via CSCL technology need practice, guidance and
406support in learning the social interaction skills, just as students learning in the classroom
407need support from their instructor (Soller 2001).

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

408The goal of our research is to support collaboration by modeling collaborative skills.
409COLLECT-UML is capable of diagnosing students’ collaborative actions, such as
410contributions to the chat area and contributions to the group diagram, using an explicit
411model of collaboration. This collaboration model is represented using constraints, the same
412formalism used to represent domain knowledge. A significant contribution of our work is to
413show that constraints can be used not only to represent domain-level knowledge, but also
414higher-order skills such as collaboration.
415Our model of collaboration consists of set of 25 meta-constraints representing ideal
416collaboration. The structure of meta-constraints is identical to that of domain-level
417constraints: each meta-constraint consists of a relevance condition, a satisfaction condition
418and a feedback message. The feedback message is presented when the constraint is
419violated. In order to develop meta-constraints, we studied the existing literature on
420characteristics of effective collaboration, such as (Constantino-Gonzalez et al. 2003;
421Vizcaino 2005; Soller 2001; Rummel and Spada 2005), and also used our own experience
422in collaborative work.
423The meta-constraints are divided into four main groups: constraints that monitor
424students’ contributions to the group diagram (making sure that students remain active,
425encouraging them to discuss the differences between their individual diagrams and the
426group diagram, etc.), constraints that monitor students’ contributions to the chat area and
427the use of communication categories, constraints that monitor the differences between the
428student’s individual solution and the group solution, and constraints that monitor the initial
429planning of tackling the problem. Table 1 shows different categories of meta-constraints
430with one or more examples for each category.
431There are four different time intervals the meta-constraints are evaluated at, which were
432chosen based on our experience from the pilot study: one-off (e.g., the meta-constraint
433checking whether the students have introduced themselves to their team-mates and have
434planned the session and the meta-constraint checking that the student has constructed a
435diagram in his/her individual workspace before joining the group discussion), 5 min (e.g.,
436asking students to ensure adequate elaboration is provided in their explanations), 8 min
437(e.g., encouraging students to explain to other members why they agree or disagree with a
438solution), and 10 min (e.g., encouraging students to contribute to the construction of the
439group diagram).
440Figure 6 illustrates the four meta-constraints. The relevance condition of constraint 227
441focuses on methods that are defined for certain classes in the student’s individual solution
442(referred to as SS), when the same classes also exist in the group solution (GS). For this
443constraint to be satisfied, the corresponding methods should also appear in the group
444solution. If that is not the case, the constraint is violated, and the student will be given the
445feedback message attached to this constraint, which encourages the student to discuss those
446methods with the group, or add them to the group solution. Constraint 229 focuses on the
447use of communication categories in student’s contribution (referred to as SC), checking
448whether the student has provided any explanation for the changes they have made to the
449group diagram. Constraint 238 is relevant if the student has made a contribution to the chat
450area and its satisfaction condition checks whether the student has typed a statement after
451using any of the available communication categories. If not, it encourages them to provide
452more explanation as part of their contribution. Constraint 240 is always relevant (because
453its relevance condition is always true); its satisfaction condition checks whether the student
454has made any contributions to the elements of the group solution (classes, methods,
455attributes or relationships), or to the chat area. If that is not the case, the feedback message
456suggests the student to contribute to the discussion.

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

457In order to be able to evaluate meta-constraints, the system maintains a rich collection of
458data about all actions students perform in COLLECT-UML. After each change made to the
459group diagram, an XML event message containing the update and the identity (id) of the
460student who made that change is sent to the server. Each chat event consists of the student
461id, the type of sentence opener they have used and the content of the message.
462Histories of all the contributions made to the shared diagram as well as the messages
463posted to the chat area are stored on the server. The internal representation consists of seven
464components (i.e., Relationships, Attributes, Methods, Classes, Superclasses, Subclasses and
465Desc). The Desc component (short for Description) includes the student’s activities in the
466chat area during a specified amount of time. The meta-constraints are evaluated against

(227

 "Some methods in your individual solution are missing from the
 group diagram. You may wish to share your work by adding those
 method(s)/discuss it with other members."
 (and (match SS METHODS (?* "@" ?tag ?name ?class_tag ?*))
 (match SS CLASSES (?* "@" ?class_tag ?*))
 (match GS CLASSES (?* "@" ?class_tag ?*)))
 (match GS METHODS (?* "@" ?tag ?name2 ?class_tag ?*))
 "methods"
 (?class_tag))

(229
 "You may wish to give explanation and provide justification each time
 you make a change to the shared diagram."
 (or-p (match SC CLASSES (?* "@" ?class_tag ?*))
 (match SC METHODS (?* "@" ?method_tag ?*))
 (match SC ATTRIBUTES (?* "@" ?attr_tag ?*))
 (match SC RELATIONSHIPS (?* "@" ?rel_tag ?*)))
 (and (match SC DESC (?* "@" ?tag ?*))
 (or-p (match SC DESC (?* "@" "Request" ?*))
 (match SC DESC (?* "@" "Inform" ?*))
 (match SC DESC (?* "@" "Motivate" ?*))
 (match SC DESC (?* "@" "Task" ?*))
 (match SC DESC (?* "@" "Maintenance" ?*))
 (match SC DESC (?* "@" "Argue" ?*))))
 "descriptions"
 nil)

(238
 "Ensure adequate elaboration is provided in explanations."
 (match SC DESC (?* "@" ?tag ?text ?*))
 (not-p (test SC ("null" ?text)))
 "descriptions"
 nil)

(240
 "Would you like to contribute to the group discussion?"
 T
 (or-p (match SC CLASSES (?* "@" ?class_tag ?*))
 (match SC METHODS (?* "@" ?method_tag ?*))
 (match SC ATTRIBUTES (?* "@" ?attr_tag ?*))
 (match SC RELATIONSHIPS (?* "@" ?rel_tag ?*))
 (match SC DESC (?* "@" ?tag ?*)))
 "descriptions"
 nil)

Fig. 6 Examples of meta-constraints

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

467these histories, and feedback is given on contributions that involve adding/deleting/
468updating components in the shared diagram as well as contributions made to the chat area.
469Soller (2001) proposed a collaborative learning model (CL) that identifies the
470characteristics exhibited by effective learning teams. The five facets of the CL model are
471participation, social grounding, performance analysis and group processing, application of
472active learning conversation skills and promotive interaction. The CL model also supports
473strategies that could be implemented by CSCL systems for helping groups acquire effective
474collaborative learning skills. COLLECT-UML supports a number of these strategies:

475– Participation is supported by encouraging students to participate, if they remain
476inactive for a specified amount of time.
477– Social grounding is supported by assigning the moderator role to one student in each
478team. The moderator is responsible for submitting the group solution.
479– Active learning conversation is supported by providing feedback on collaborative skill
480usage, storing student and group models and encouraging students to challenge or
481explain others’ ideas.
482– Performance analysis and group processing is supported by providing feedback on
483group/individual performance and allowing students to inspect their student/group
484models (Fig. 5).
485– Promotive interaction is supported by ensuing adequate elaboration is provided in
486students’ explanations and updating student/group models when students ask for and
487receive help.

489Evaluation

490As the credibility of an ITS can only be gained by proving its effectiveness in a classroom
491environment, we have conducted two evaluation studies with COLLECT-UML, described
492in this section.

493Pilot study

494We conducted a pilot study in March 2006. The study aimed to discover users’ perceptions
495of various aspects of the system, mainly the quality and usefulness of feedback messages
496(both task-based and collaboration-based) and the interface.
497The participants were 16 postgraduate students enrolled in an Intelligent Tutoring
498Systems course at the University of Canterbury, whom we divided into eight pairs. The
499participants had completed a half of the course before the study and were expected to have
500a good understanding of ITSs. All participants except one were familiar with UML
501modeling.
502The study was carried out in the form of a think-aloud protocol (Ericsson and Simon
5031984). This technique is increasingly being used for practical evaluations of computer
504systems. Although think-aloud methods have traditionally been used mostly in psycholog-
505ical research, they are considered the single most valuable usability engineering method
506(Nielsen 1993). Each participant was asked to verbalize his/her thoughts while performing a
507UML modeling task using COLLECT-UML and collaborating with his/her team-mate. Data
508was collected from video footages of think-aloud sessions, informal discussions after the
509session and researcher’s observations.

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

510The majority of the participants felt that the interface was nicely designed and found the
511chat tool to be very useful for communicating their ideas. Most of them said that the
512problems were challenging and seemed to tackle a good range of complexity. A few
513participants mentioned that they found the interface a bit complicated and needed more time
514to learn how to use it. In order to name a new component (class, attribute, method or
515relationship), the students were required to highlight phrases from the problem text.
516Although some participants found this somewhat restrictive initially, they became more
517comfortable with the interface once they had a chance to experiment with it.
518The definitions of concepts used in designing UML class diagrams were included in the
519Help document, which several participants found quite useful. The majority of the
520participants felt that the feedback messages helped them understand the domain concepts
521that they found difficult. Since they spent only about 30–40 min working with the system,
522they did not pay much attention to the collaboration-based feedback and hence were not
523able to comment on the quality of such messages.
524The participants provided several suggestions, which were used to modify the system
525after the study. Following the comments some students made on the chat area, the color of
526the text was changed to make it easier to read. One participant commented that it was
527possible to paste elements into the group diagram without holding the pen. This error was
528fixed so that the participants could not make any changes to the group diagram unless they
529were holding the pen. There were also a few suggestions for further improvement, e.g.,
530being able to copy a group of elements from the individual diagram and paste them into the
531group diagram (instead of one element at a time), being able to resize the problem text area,
532asking for the definitions of static elements to be included in the Help document, and
533asking for the group diagram to be updated more often.

534Evaluation study

535The evaluation study was carried out at the University of Canterbury in May 2006, after
536COLLECT-UML was enhanced in the light of the findings from the pilot study. The study
537involved 48 volunteers enrolled in an introductory Software Engineering course. This
538second-year course teaches UML modelling as outlined by Fowler (2004). The students
539learned UML modeling concepts during 2 weeks of lectures and had some practice during
5402 weeks of tutorials prior to the study.
541The study was conducted in two streams of 2-h laboratory sessions over 2 weeks. In the
542first week, the students filled out a pre-test and then interacted with the single-user version
543of the system. Doing so gave them a chance to learn the interface and provided us with an
544opportunity to assess their UML knowledge and decide on the pairs and moderators.
545At the beginning of the sessions in the second week, we told students what
546characteristics we would be looking for in effective collaboration (that was considered as
547a short training session). The instructions describing the characteristics of good
548collaboration and the process we expected them to follow (Fig. 7) were also handed out.
549The idea of providing students with such a script and therefore supporting instructional
550learning came from a study conducted by Rummel and Spada (2005). The participants were
551also given a screenshot of the system highlighting the important features of the multi-user
552interface (Fig. 4).
553The students were randomly divided into pairs with a pre-specified moderator. The
554moderator for each pair was the one who had scored better in the pre-test (filled out in the
555first week). The pairs worked on a big, relatively complex problem (given in Appendix)
556individually and joined the group discussion whenever they were ready—the group

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

557diagram was activated after 10 min. We made sure that the pairs were physically separated,
558so that they could only communicate through the chat window.
559At the end of the session, each participant was asked to complete a post-test, which was
560used to compare their performance with the pre-test from the previous session. They were
561also asked to fill out a questionnaire commenting on the interface, the impact of the system
562on their domain knowledge and their collaborative skills, and the quality of the feedback
563messages provided by the system on their individual and collaborative activities.

Initial Phase

- Introduce yourself to each other
- Decide on how much time you are planning to spend on the individual diagram
- Ask questions about UML if you are not sure about anything (don’t talk about the

solution though)
- Read the problem text carefully and construct a UML diagram for the problem

description in your individual workspace
- The group diagram will be enabled after 10 minutes. After the group diagram is

enabled, you can start discussing your solution with other group members
(whenever you are ready)

Main Phase

- After the shared diagram gets activated, get the pen (request it if someone else is
already holding the pen) and copy and paste a component of your individual
diagram to the shared workspace, when the pen is available

- Release the pen as soon as you finish with adding a component to the shared
diagram. Don’t hold the pen for too long and let other members contribute too

- Compare your individual solution with the group diagram being constructed in the
shared workspace. Let the group members know if there is any difference
between your solution and the shared solution

- Actively discuss any changes you make to the shared diagram with the other
group members. After every change you make to the group diagram, make sure
you give explanation and provide justification in the chat area

- After a member makes a change to the shared diagram or suggests something,
make sure to express your opinion as to whether or not you agree with it and why

- Ask your team-mate to give explanation and provide justification, if you cannot
follow their contribution

- Inform your team member that you read and/or appreciate their comments
- Challenge other members’ contributions to the shared diagram and don’t accept

an idea if you do not agree with it
- Make sure you are contributing to the shared diagram and/or the chat area. Don’t

just sit there and watch your team-mate solving the problem

Final Phase

- Let the moderator know whether or not you agree with the final diagram before
he/she submits it to the system

- Discuss the feedback from the system with each other and modify the shared
diagram accordingly

- Move on to the next problem and follow the previous procedure (individual
problem-solving, collaborative problem-solving and group agreement on a joint
solution)

Fig. 7 Exemplary collaboration

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

564Interacting with the system

565The experimental group consisted of 26 students (13 pairs) who received feedback on the
566domain model as well as their collaborative activities. The control group consisted of 22
567students (11 pairs) who only received feedback on the domain model (no feedback on
568collaboration was provided in this case). There were four female participants in four
569different pairs (one from the control group and three from the experimental group). Both
570control and experimental groups received instructions on characteristics of good
571collaboration at the beginning of the session.
572Both versions of the system provided five levels of feedback on students’ solutions
573(Positive/negative, Error Flag, Hint, All Hints, Full Solution). Table 2 presents some
574general statistics about the second week of the study. Active pairs are those who
575collaborated (i.e., contributed to the chat area, the group diagram or both). Out of ten active
576pairs, six pairs in the control group and eight pairs in the experimental group submitted
577their group solutions and received feedback from the system. The logs for the other active
578pairs show that they constructed a group diagram and/or discussed it in the chat area, but
579the moderators did not submit the final solution. Four pairs in each group managed to solve
580the problem; two experimental pairs and one control pair got it right on their first
581submission.
582As can be seen from Table 3, the experimental group students contributed more to the
583group diagram, with the difference between the average number of individual contributions
584for control and experimental groups being statistically significant (t=2.03, p=0.03). The
585meta-constraints generated collaboration-based feedback 19.4 times on average for the
586experimental group. The total amount of time spent interacting with the system was 1.4 h
587for the control group and 1.3 h for the experimental group.

588Pre- and post-test performance

589The pre-test and post-test each contained four multiple-choice questions, followed by a
590question where the students were asked to design a simple UML class diagram. The tests
591included questions of comparable difficulty, dealing with inheritance and association
592relationships. The post-test had an extra question, asking the participants to describe the
593aspects of effective collaborative problem-solving. The mean scores of the pre- and post-
594test are given in Table 4. The numbers reported for the post-test do not include the
595collaboration question.
596The most important measure of the ITS effectiveness is the improvement in
597performance. The average mark on the pre-test for the students who participated in the
598study was 52% for control group and 49% for the experimental group (Table 4). There was
599no significant difference on the pre-test, meaning that the groups were comparable. The
600students’ performance on the post-test was significantly better for both the control group
601(t=2.11, p=0.01) and the experimental group (t=2.06, p=0.002). The experimental group,

Control Experimental t2.1

Pairs 11 13 t2.2
Active pairs 10 10 t2.3
Pairs submitted solutions 6 8 t2.4
Pairs solved the problem 4 4 t2.5

Table 2 Number of pairs, active
pairs and pairs which submitted/
solved the problems

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F 602who received feedback on their collaboration while working with the system, performed

603significantly better on the collaboration question (t=2.02, p=0.003), showing that they
604acquired more knowledge on effective collaboration.
605The effect size for the experiment was also calculated. The common method to calculate
606it in the ITS community is to subtract the control group’s mean score from the experimental
607group’s mean score and divide by the standard deviation of the scores of the control group
608(Bloom 1984). Using this method, the effect size of the system on student’s collaboration
609knowledge is very high:

Average collaboration score exp � Average collaboration score control

� �.
s:d: control ¼ 1:3:

612Learning

613We have analyzed the students’ individual log files in order to identify how students learn
614the underlying domain concepts during their interaction with COLLECT-UML in the
615second week. Figure 8 illustrates the probability of violating a domain constraint plotted
616against the occasion number for which it was relevant, averaged over all domain constraints
617and all participants in control and experimental groups. The data points show a regular
618decrease, which is approximated by a power curve with a close fit of 0.78 and 0.85 for the
619control and experimental groups respectively, thus showing that students do learn
620constraints over time. The probability of 0.21 for control group violating a constraint on
621the first occasion of application decreased to 0.09 at its eleventh occasion, displaying a
62261.9% decrease in probability. The probability of 0.23 for experimental group violating a
623constraint on the first occasion of application decreased to 0.12 at its eleventh occasion,
624displaying a 47.8% decrease in probability.

Control Experimental t3.1

Average SD Average SD t3.2

Group submissions 5.66 6.02 4.62 5.09 t3.3
Meta-constraints applied – – 19.37 9.02 t3.4
Individual contributions to
the group diagram

11.7 8.65 18.72 10.57 t3.5

Individual contribution to
the chat area

22.22 15.33 23.92 11.70 t3.6

Individual submissions 19.81 20.56 16.40 18.51 t3.7
Total time (hours) 1.39 0.29 1.27 0.38 t3.8

Table 3 Number of group sub-
missions, contributions to the
group area and total interaction
time

Control Experimental t4.1

Average (%) SD (%) Average (%) SD (%) t4.2

Collaboration 22 22 52 39 t4.3
Pre-test 52 20 49 19 t4.4
Post-test 76 25 73 25 t4.5
Gain score 17 28 21 31 t4.6

Table 4 Mean pre- and post-test
scores

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

625Figure 9 illustrates the learning curve for meta-constraints only (for the experimental
626group). The data points show a decrease, which is approximated by a power curve with a R2

627fit of 0.59, initial error probability (0.32) and learning rate (−0.16), thus showing that
628students learn meta-constraints over time. Because the students used the system for a short
629time only, more data is needed to analyze learning of meta-constraints, but the trend
630identified in this study is encouraging. In general, the students violate more task-based
631constraints than meta-constraints, as there are more domain constraints than meta-constraints.
632We found out that 20 domain constraints (out of 76 constraints that were relevant for the
633problem) were never violated by the participants, meaning that the students already knew
634the corresponding domain concepts. These constraints can be divided into several groups:
635(1) constraints that make sure the name of each class or attribute is unique; (2) constraints
636that check whether classes, attributes, inheritances, compositions and aggregations are
637represented in the student’s solution using appropriate UML constructs; (3) a constraint
638making sure that each method parameter has a name; (4) a constraint that makes sure each
639class has at least one attribute or method; (5) constraints that check inheritances in students’
640diagrams, making sure that there are no cycles; (6) a constraint that makes sure each
641subclass is connected to a superclass; (7) a constraint that makes sure the right set of classes
642participate in the associations, and finally (8) constraints that check whether all the
643superclasses/subclasses are necessary.
644The difficult domain constraints (which were violated most often by the participants
645during their interaction with the system) are the following: (1) a constraint that checks the
646types of attributes; (2) constraints that check for missing methods, aggregation relationships
647and abstract classes in the student’s solution; (3) constraints that check whether the source
648and destination multiplicities of the associations have been specified, and finally (4) a
649constraint that makes sure concrete classes have not been used to represent abstract classes.

Control Group

y = 0.2485x
-0.3833

R
2
 = 0.7852

Experimental Group

y = 0.2544x
-0.2128

R
2
 = 0.851

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11

Occasion

P
r
o

b
a

b
il

it
y

Control Experimental Power (Control) Power (Experimental)

Fig. 8 Probability of domain constraint violation for individuals in control and experimental groups

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

650In all these cases, the constraints are very specific, and it is likely that the student will focus
651on these elements of the solution only when the solution is mostly correct.
652The easy meta-constraints (violated the least by the students during their interaction with
653the system) included: (1) a meta-constraint that makes sure students ask for or provide
654explanations and justifications whenever they (dis)agree with their team mates; (2) a meta-
655constraint that makes sure adequate elaboration is provided in student’s explanations; (3) a
656meta-constraint that checks whether the student has constructed a diagram in their
657individual workspace before joining the group diagram, and finally (4) meta-constraints that
658compare the individual and group workspace checking for missing methods and attributes.
659The difficult meta-constraints, which were violated the most by the participants,
660included the ones checking that the student is contributing to the group discussion and
661shared diagram (applied every 10 min), and the meta-constraints letting students know that
662some aggregations, inheritances and classes in the group diagram are missing from their
663individual solutions and suggesting them to discuss this with other members.

664Use of communication categories

665Communication categories structure the students’ conversation and eliminate the off-task
666discussions to a great extent. The percentage of off-topic conversations was 3.84% for the
667control group and 1.55% for the experimental group. The pie charts summarizing the
668control and experimental groups’ interactions are shown in Figs. 10 and 11 respectively.
669The experimental group was more balanced in this respect, as the students participated
670more in group maintenance (by using the Maintain opener) and task management activity
671(Task opener), requesting information, arguing and disagreeing with other members
672compared with the control group. Inform, Acknowledge and Introduce and Plan
673contributions occurred more in the control group.

674Examples of good and bad collaboration

675Analysis of session logs shows that four pairs from the control group and seven pairs from
676the experimental group collaborated well. We chose pair A from the control and pair B

y = 0.325x
-0.1654

R
2
 = 0.5883

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

Occasion

P
r
o

b
a
b

il
it

y

Fig. 9 Probability of meta-constraint violation for the experimental group

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

677from the experimental group to illustrate examples of good and bad collaboration. There
678was no difference between the average pre-test marks of the two pairs (60% for pair A and
67958% for pair B). However, pair B did much better on the post-test (average of 85%
680compared to 60% scored by pair A). Figures 12 and 13 illustrate the probability of domain
681constraint violation for pairs A and B respectively. As it can be seen, the data points in
682Fig. 13 show a regular decrease, which is approximated by a power curve with a R2 fit of
6830.87, initial error probability (0. 23) and learning rate (−0.76), thus showing that students
684learn domain constraints over time, whereas that is not the case for pair A. The probability
685of 0.3 for pair A violating a constraint on the first occasion has decreased to 0.29 at its
686seventh occasion, which is almost the same as the initial error probability.
687Figures 14 and 15 show the probability of meta-constraint violation for the two members
688in pair B (pair A did not receive feedback on their collaboration). The data points show a
689regular decrease, which is approximated by a power curve with a R2 fit of 0.89/0.85, initial
690error probability (0.42/0.31) and learning rate (−0.92/−1.2) for members B1/B2
691respectively, thus showing that students learn meta-constraints equally well over time.
692We also looked at the use of communication categories by the two pairs. Pair B was
693much more balanced in using different communication categories, while pair A used the
694Inform communication categories extensively and spent very little time on planning the
695session in advance.

Fig. 10 Use of communication
categories by the control
group

Fig. 11 Use of communication
categories by the experimental
group

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

696Figures 16 and 17 show timelines of actions performed by each student, where A1 and
697B1 are moderators. The diamonds represent the contributions to the chat area, the squares
698represent their contributions to the group diagram and crosses are used to show the
699moderators asking for feedback on the group diagram. The timelines do not show the
700activities of the pairs on their individual diagrams.
701As it can be seen in Fig. 16, the moderator is much more active than the other student.
702Since they were part of the control group, they were not receiving feedback on their
703collaboration activities. We have indicated the parts where getting collaboration feedback
704would have been useful. For example, collaborative feedback would have been generated at
70512:27 asking member A1 to provide an explanation or justification after making a change to
706the shared area, or at 12:48 asking them to elaborate on their contribution when they used
707an empty sentence opener. Collaborative feedback could have also encouraged member A2

Group A - Domain const

y = 0.3083x-0.0512

R2 = 0.2242

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8

Occasion

P
r
o

b
a
b

il
it

y

Fig. 12 Probability of domain constraint violation for Pair A

Group B - Domain Const

y = 0.2725x-0.7584

R2 = 0.8755

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

Occasion

P
r
o

b
a
b

il
it

y

Fig. 13 Probability of domain constraint violation for Pair B

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

708to be more active and to provide justification each time they made a change to the shared
709diagram.
710Figure 17 shows the summary of collaboration in pair B, including the parts where the
711students received collaborative feedback. For example, at 12.18 the collaborative feedback
712encourages member B1 to justify their contributions on the group diagram. At 12:44 and
71312:53, the changes (in this case creating a Transaction class and aggregation relationships)
714were explained by using an Inform sentence opener. Also at 12:41, member B1 received
715meta-constraint 223 which states Some relationship types (aggregations) in your individual
716solution are missing from the group diagram. You may wish to share your work by adding
717those aggregation(s)/discuss it with other members. As we can see, member B1 disagrees
718with the association created by member B2 at 12:49 (using a Disagree sentence opener) and
719changes the relationship to aggregation instead. The change is then justified by using an
720Inform sentence opener at 12:53.

Meta-constraints - member B1

y = 0.4556x-0.9243

R2 = 0.8911

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6

Occasion

P
r
o

b
a
b

il
it

y

Fig. 14 Probability of meta-constraint violation for Member B1 of Pair B

Meta-constraints - member B2

y = 0.3326x-1.2217

R2 = 0.8511

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6

Occasion

P
r
o

b
a

b
il

it
y

Fig. 15 Probability of meta-constraint violation for Member B2 of Pair B

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

Fig. 16 Part of the collaboration log of Pair A (control)

Fig. 17 Part of the collaboration log of Pair B (experimental)

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

Q2

Q2

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

721Examples of collaboration feedback being useful for member B2 is at 12:25 where it
722encourages him to make sure adequate elaboration is provided when he uses an empty
723Agree sentence opener at 12:23. The student did not use an empty sentence opener from
724that point on. The same student also created an association at 21:47 following the feedback
725message received at 12:35 saying Some relationship types (associations) in your individual
726solution are missing from the group diagram. You may wish to share your work by adding
727those association(s)/discuss it with other members.
728We also analyzed collaboration of another pair C from the control group who
729collaborated effectively compared with other pairs and also did well in the UML diagram.
730These students had a lower initial error rate on their learning curves. Figure 18 shows the
731probability of domain constraint violation for pair C. The data points show a regular
732decrease that is approximated by a power curve with an R2 fit of 0.91, initial error
733probability (0. 13) and learning rate (−0.93), thus showing that the members learn domain
734constraints over time.
735Figure 19 shows an excerpt of the collaboration log of pair C. We have highlighted some
736parts where getting feedback would have made the collaboration process more effective.
737For instance, at 12:17 a collaboration message could have encouraged member C1 to be
738more active in the chat area and at 12:55 to give an explanation and provide justification
739after making changes to the shared diagram. As shown in Fig. 19, member C2 is more
740active in the chat area and is not making much contribution to the shared diagram, leaving
741member C1 to make most of the changes. A feedback message could have encouraged him
742to contribute more to the shared diagram.

742Subjective analysis

744The participants were given a questionnaire at the end of the session to determine their
745perceptions of the system. Table 5 presents a summary of the responses. Seventy-three
746percent of the control group and 41% of the experimental group were familiar with UML

Group C - Domain const

y = 0.16x
-0.9354

R
2
 = 0.9196

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10

Occasion

P
r
o

b
a
b

il
it

y

Fig. 18 Probability of domain constraint violation for Pair C

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

747modeling from lectures and some work, and the rest had previous experience only from the
748lectures. Most of the participants (61% of control group and 78% of experimental group)
749responded they would recommend the system to other students.
750The mean responses when asked to rate how much they learned by interacting with
751COLLECT-UML were 2.8 and 3.5 for control and experimental groups respectively, on the
752scale of 1 (nothing) to 5 (very much). The students found the interface easy to learn and use
753(the mean responses were 3.4 and 3.0 for control and experimental groups respectively).
754The majority of participants said they needed 10–30 min to learn the interface and become
755comfortable using it.

Fig. 19 Part of the collaboration log of Pair C (control)

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

Q2

Control Experimental t5.1

Average SD Average SD t5.2

Amount learnt 2.8 0.9 3.5 0.7 t5.3
Enjoyment 2.8 1.1 3.3 1.0 t5.4
Ease of using interface 3.4 1.0 3.0 0.9 t5.5
Usefulness of partner 3.1 1.4 3.2 1.2 t5.6
Effect of working in groups 3.6 1.0 3.6 0.9 t5.7
Usefulness of task-based
feedback

3.2 0.8 3.6 0.8 t5.8

Usefulness of collaboration-based
feedback

– – 3.6 0.7 t5.9

Table 5 Mean responses from
the user questionnaire for the
evaluation study

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

756Students were offered individualized and group feedback on their solutions upon
757submission. The mean ratings for the usefulness of task-based feedback (given on their
758UML diagrams) were 3.2 and 3.6 for control and experimental groups respectively, and the
759mean rating for the usefulness of collaboration-based feedback was 3.6 for experimental
760group.
761Fifty-five percent of the control participants and 59% of experimental participants had
762indicated that they would have liked to see more details in the feedback messages, whereas
763the rest of the participants mentioned that they had been provided with enough details and
764more details would have taken away the task of thinking/problem solving. Several
765participants asked for more problems to be included in the system. The comments we
766received on open questions show that the students liked the system and thought it improved
767their knowledge, and also pointed out several possible improvements.

768Discussion

769The results show that meta-constraints are an effective way of modeling collaboration. The
770students’ declarative knowledge of collaboration increased after the study: the experimental
771group (who received feedback on their collaboration) scored significantly higher when
772asked to describe effective collaborative problem solving. The learning curves also prove
773that student’s domain knowledge increases, as they learn constraints during problem
774solving. All participants performed significantly better on the post-test after short sessions
775with the system, suggesting that they acquired more knowledge in UML modeling.
776Subjective evaluation shows that most of the students felt working in groups helped them
777learn better and that they found the system to be easy to use.
778The questionnaire responses suggested that most participants appreciated the feature of
779being able to view the complete solution and found the hints helpful. Responses showed
780that the participants found the problems challenging and enjoyed the user friendliness and
781learning support of the system. There were a few suggestions for further improvement.
782There were other encouraging signs suggesting that COLLECT-UML was an effective
783teaching tool. A number of students who participated in the study inquired about the
784possibility of using COLLECT-UML after the study, for practicing UML modeling and
785preparing for the exam.

786Conclusions

787The paper discussed the design and implementation of COLLECT-UML, a CSCL
788environment developed to teach students effective collaboration and UML modeling. We
789presented the system’s architecture, interface and functionality. COLLECT-UML provides
790task-based feedback on students’ and group solutions as well as collaboration-based
791feedback intended to make the collaboration process more effective. The collaborative
792feedback is provided by analyzing students’ activities and comparing them to an ideal
793model of collaboration. COLLECT-UML is one of the rare CSCL systems to provide both
794domain-level feedback and feedback on collaboration. A significant contribution of the
795reported work is showing that constraints can be used not only to represent domain
796knowledge (and the student’s model), but are also effective in representing models of meta-
797cognitive skills.

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

798The system’s effectiveness in teaching good collaboration and UML class diagrams was
799evaluated in two classroom experiments. The results of both subjective and objective
800analysis proved that COLLECT-UML is an effective educational tool:

8011. The experimental group students acquired more declarative knowledge on effective
802collaboration, as they scored significantly higher on the collaboration test, with the
803effect size of 1.3.
8042. The collaboration skills of the experimental group students were better, as evidenced
805by these students being more active in collaboration, and contributing more to the
806group diagram. The difference between the average number of individual contributions
807for the control and experimental groups is statistically significant.
8083. The experimental group pairs were more balanced in using the various communication
809categories and had less off-topic conversations.
8104. All students improved their problem-solving skills: the participants from the both
811control and experimental group performed significantly better on the post-test after
812short sessions with the system, showing that they acquired more knowledge in UML
813modeling.
8145. The students enjoyed working with the system and found it a valuable asset to their
815learning.

816Rummel and Spada’s (2005) study shows that groups who collaborated more effectively
817outperformed their control counterparts on knowledge about aspects of a good collaboration
818and knowledge about important elements of the domain knowledge (therapy plan). In our
819full evaluation study, the participants spent less than 1.4 h, on average, interacting with the
820system and both control and experimental groups were provided with collaborative
821problem-solving setting and domain-level feedback. Both groups were shown to improve
822learning. More research is needed to investigate the effect of collaboration-based feedback
823on learning the domain knowledge.
824CBM has previously been used to effectively represent domain knowledge in several
825ITSs supporting individual learning. The contribution of this research is the use of CBM to
826model collaboration skills, not only domain knowledge. The results show that CBM is
827indeed an effective technique for modeling and supporting collaboration in computer-
828supported collaborative learning environments.

829Appendix: Given problem

830Draw a UML class diagram for an online banking system. An account keeps track of
831the balance (the number of cents owned by the customer). It also stores maximum
832overdraft, a limit on how far the account may be overdrawn. Each customer is known
833by his/her name and an e-mail address and has one or more accounts. They can deposit
834and withdraw an amount of money, and can get balance of their accounts. A saving
835account pays interest and records the interest rate. A checking account charges bank
836fees and records the amount of fees charged. A fund account pays dividends. An
837account may have a number of transactions. For each transaction made, the software
838records the date and the amount. Assume that all the numbers, except for the interest
839rate, are integers.

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

842

843References

844AllegroServe—a Web application server. Retrieved 21.8.2006 from http://www.franz.com.
845Baghaei, N., & Mitrovic, A. (2005). COLLECT-UML: Supporting individual and collaborative learning of
846UML class diagrams in a constraint-based tutor. In R. Khosla, R. Hewlett & L. Jain (Eds.) Proc. KES
8472005 (pp. 458–464). New York: Springer.
848Baghaei, N., & Mitrovic, A. (2006). A constraint-based collaborative environment for learning UML class
849diagrams. In M. Ikeda, K. Ashley & T. W. Chan (eds.) Proc. ITS 2006 (pp. 176–186).
850Baghaei, Q3N., Mitrovic, A., & Irwin, W. (2005). A constraint-based tutor for learning object-oriented analysis
851and design using UML. In C. Looi, D. Jonassen, & M. Ikeda (Eds.) Proc. ICCE 2005(pp. 11–18).
852Baghaei, N., Mitrovic, A., & Irwin, W. (2006). Problem-solving support in a constraint-based utor for UML
853class diagrams. Technology, Instruction, Cognition and Learning Journal, 4(2) (in press).
854Baker, M., de Vries, E., Lund, K., & Quignard, M. (2001). Computer-mediated epistemic interactions for
855co-constructing scientific notions: Lessons learned form a five-year research program. In P. Dillenbourg,
856A. Eurelings, & K. Hakkarainnen (Eds.), European Perspectives on CSCL (CSCL 2001). Maastricht,
857Netherlands, 2001.
858Baker, M. J Q4., & Lund, K. (1997). Promoting reflective interactions in a computer-supported collaborative
859learning environment. Journal of Computer Assisted Learning, 13(3), 175–193.
860Barros, B., & Verdejo, M. F. (2000). Analysing student interaction processes in order to improve
861collaboration: The DEGREE approach. Artificial Intelligence in Education, 11, 221–241.
862Bloom, B. S. (1984). The 2-sigma problem: The search for methods of group instruction as effective as one-
863to-one tutoring. Educational Researcher, 13, 4–16.
864Booch, G., Rumbaugh, J., & Jacobson, I. (1999) The unified modelling language user guide. Reading:
865Addison-Wesley.
866Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent Web-based educational systems. Artificial
867Intelligence in Education, 13, 159–172.

Q2

P
ri
n
t
w
ill

b
e
in

b
la
ck

an
d
w
h
it
e

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

http://www.franz.com

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

868Constantino-Gonzalez, M., & Suthers, D. (2002). Coaching collaboration in a computer mediated learning
869environment. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL
870Community. Proceedings of CSCL 2002 (pp. 583–584). Hillsdale, NJ: Lawrence Erlbaum Associates.
871Constantino-Gonzalez, M. A., Suthers, D., & Escamilla de los Santos, J. (2003). Coaching web-based
872collaborative learning based on problem solution differences and participation. Artificial Intelligence in
873Education, 13(2–4), 263–299.
874Dillenbourg, P. (2003). Over-scripting CSCL: The risks of blending collaborative learning with instructional
875design. In A. P. Kirschner (Ed), Three worlds of CSCL. Can we support CSCL (pp. 61–91). Heerlen:
876Open Universiteit Nederland.
877Dimitracopoulou, A. (2005). Designing collaborative learning systems: Current trends & future research
878agenda. In T. Koschmann, D. D. Suthers, & T. W. Chan (Eds.), Proceedings of CSCL 2005. Computer
879support for collaborative learning: The Next 10 Years! (pp. 115–124). Mahwah, NJ: Lawrence Erlbaum
880Associates.
881Doise, W., & Mugny, G. (1984). The social development of the intellect. International Series in
882Experimental Social Psychology, 10. London: Pergamon Press.
883Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT
884Press.
885Feidas, C., Komis, V., & Avouris, N. (2001). Design of collaboration-support tools for group problem
886solving. In N. Avouris & N. Fakotakis (Eds.), Advances in Human–Computer Interaction (pp. 263–268).
887Patras, Greece.
888Fowler, M. (2004). UML distilled: A brief guide to the standard object modelling language. Reading:
889Addison-Wesley, 3rd edition.
890Gogoulou, A., Gouli, E., Grigoriadou, M., & Samarakou, M. (2005). ACT: A Web-based adaptive
891communication tool. In T. Koschmann, D. D. Suthers, & T. W. Chan (Eds.), Proceedings of CSCL 2005.
892Computer support for collaborative learning: The Next 10 Years! (pp. 180–189). Mahwah, NJ:
893Lawrence Erlbaum Associates.
894Hermann, F., Rummel, N., & Spada, H. (2001). Solving the case together: The challenge of net-based
895interdisciplinary collaboration. In P. Dillenbourg, A. Eurelings & K. Hakkarainnen (Eds.), First
896European Conference on Computer-Supported Collaborative Learning (pp. 293–300). Maastricht,
897Netherlands.
898Inaba, A., & Mizoguchi, R. (2004). Learners’ roles and predictable educational benefits in collaborative
899learning; An ontological approach to support design and analysis of CSCL. In J. Lester, R. M. Vicari &
900F. Paraguacu (Eds.) ITS 2004 (pp. 285–294).
901Jarboe, S. (1996). Procedures for enhancing group decision making. In B. Hirokawa & M. Poole (Eds.),
902Communication and Group Decision Making (pp. 345–383). Thousand Oaks, CA: Sage Publications.
903Jerman, P., Soller, A., & Muhlenbrock, M. (2001). From mirroring to guiding: A review of state of the art
904technology for supporting collaborative learning. In P. Dillenbourg, A. Eurelings & K. Hakkarainen
905(Eds.) European Perspectives on CSCL (CSCL 2001) (pp. 324–331).
906Jermann, P., Q4Soller, A., & Lesgold, A. (2004). Computer software support for CSCL. In P. Dillenbourg (Ed.)
907and Strijbos J. W., Kirschner, P. A. and Martens R. L. (Vol. Eds.), Computer-supported collaborative
908learning: Vol 3. What we know about CSCL. and implementing it in higher education (pp. 141–166.).
909Kluwer Academic Publishers: Boston, MA.
910Katz, S., Aronis, J. & Creitz, C. (1999) Modeling pedagogical interactions with machine learning. Proc. 9th
911International Conference on Artificial Intelligence in Education (pp. 543–550.). LeMans, France.
912Lazonder, A., Wilhelm, P., & Ootes S. (2003). Q4Using sentence openers to foster student interaction in
913computer-mediated learning environments. Computers & Education, 41, 291–308.
914Martin, B., & Mitrovic, A. (2002) Authoring Web-based tutoring systems with WETAS. In Kinshuk, R.
915Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson & C.-H. Lee (Eds.) ICCE 2002 (pp. 183–187).
916Martin, B., & Mitrovic, A. (2003). Domain modeling: art or science? In U. Hoppe, F. Verdejo & J. Kay
917(Eds.) Proc. 11th Int. Conference on Artificial Intelligence in Education (pp. 183–190). Amsterdam: IOS
918Press.
919Mayo, M., & Mitrovic, A. (2001). Optimising ITS behaviour with Bayesian networks and decision theory.
920Artificial Intelligence in Education, 12(2), 124–153.
921McManus, M., & Aiken, R. (1995). Monitoring computer-based problem solving. Int. Journal of Artificial
922Intelligence in Education, 6(4), 307–336.
923Mitrovic, A. (1998). Learning SQL with a Computerised Tutor. 29th ACM SIGCSE Technical Symposium
924(pp. 307–311).
925Mitrovic, A. (2002). NORMIT, a Web-enabled tutor for database normalization. In Kinshuk, R. Lewis, K.
926Akahori, R. Kemp, T. Okamoto, L. Henderson, & C.-H. Lee (Eds.) Proc. International Conference on
927Computers in Education (pp. 1276–1280). Los Alamitos, CA: IEEE Computer Society.

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

928Q4Mitrovic, A. (2003). An intelligent SQL tutor on theWeb. Artificial Intelligence in Education, 13(2–4), 173–197.
929Mitrovic, A. (2005). The effect of explaining on learning: A case study with a data normalization tutor. In
930C.-K. Looi, G. McCalla, B. Bredeweg, & J. Breuker (Eds.) Proc. 12th Int. Conf. Artificial Intelligence in
931Education (pp. 499–506). Amsterdam: IOS Press.
932Mitrovic, A., Mayo, M., Q4Suraweera, P., & Martin, B. (2001). Constraint-based tutors: A success story. In
933L. Monostori, J. Vancza, & M. Ali (Eds.), Proc. 14th Int. Conference on Industrial and Engineering
934Applications of Artificial Intelligence and Expert Systems IEA/AIE-2001 (pp. 931–940). Berlin: Springer.
935Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language. Artificial
936Intelligence in Education, 10(3–4), 238–256.
937Mitrovic, A., Suraweera, P., Martin, B., & Weerasinghe, A. (2004). DB-suite: Experiences with three
938intelligent, Web-based database tutor. Journal of Interactive Learning Research, 15(4), 409–432.
939Nielsen, J. (1993). Usability engineering. San Diego, CA: Academic.
940Ogata, H., Matsuura, K., & Yano, Y. (2000). Active knowledge awareness map: Visualizing learners
941activities in a Web based CSCL environment. Int. Workshop on New Technologies in Collaborative
942Learning (pp. 89–97).
943Ohlsson, S. (1994). Constraint-based student modelling. In J. Greer & G. McCalla (Eds.) Student modelling:
944the key to individualized knowledge-based instruction (pp. 167–189), Berlin: Springer.
945Plaisant, C., Rose, A., Rubloff, G., Salter, R., & Shneiderman, B. The design ofhistory mechanisms and their
946use in collaborative educational simulations. 3rd International Conference on Computer Support for
947Collaborative Learning (CSCL 1999) (pp. 348–359).
948Rosatelli, M., Self, J., & Thirty, M. (2000). LeCS: A collaborative case study system. Proc. 5th International
949Conference on Intelligent Tutoring Systems (ITS 2000) (pp. 242–251).
950Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to promoting
951collaborative problem-solving in computer-mediated settings. Journal of the Learning Sciences, 14(2),
952201–241.
953Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International
954Journal of Artificial Intelligence in Education, 12, 40–62.
955Soller, A., & Lesgold, A. (2000). Knowledge acquisition for adaptive collaborative learning environments.
956AAAI Fall Symposium: Learning How to Do Things, Cape Cod, MA.
957Sommerville, I. (2004) Software engineering. Pearson/Addison-Wesley, 7th ed.
958Suraweera, P., & Mitrovic, A. (2002). KERMIT: A Constraint-based tutor for database modeling. In S. Cerri,
959G. Gouarderes & F. Paraguacu (Eds.) ITS 2002 (pp. 377–387).
960Suraweera, P., & Mitrovic, A. (2004). An intelligent tutoring system for entity relationship modelling.
961Artificial Intelligent in Education, 14(3–4), 375–417.
962Vizcaino, A. (2005). A simulated student can improve collaborative learning. International Journal of
963Artificial Intelligence in Education, 15, 3–40.
964Webb, N. M., Troper, J. D., & Fall, R. (1995). Constructive activity and learning in collaborative small
965groups. Journal of Educational Psychology, 87, 406–423.

N. Baghaei, et al.

JrnlID 11412_ArtID 9018_Proof# 1 - 02/08/2007

