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10Abstract Although temporality is a key characteristic of the core concepts of CSCL—
11interaction, communication, learning, knowledge building, technology use—and although
12CSCL researchers have privileged access to process data, the theoretical constructs and
13methods employed in research practice frequently neglect to make full use of information
14relating to time and order. This is particularly problematic when collaboration and learning
15processes are studied in groups that work together over weeks, and months, as is often the
16case. The quantitative method dominant in the social and learning sciences—variable-
17centred variance theory—is of limited value for studying change on longer time scales. We
18introduce the event-centred view of process as a more generally applicable approach, not
19only for quantitative analysis, but also for providing closer links between qualitative and
20quantitative research methods. A number of methods for variable- and event-centred
21analysis of process data are described and compared, using examples from CSCL research.
22I conclude with suggestions on how experimental, descriptive, and design-oriented research
23orientations can become better integrated.

24Keywords Process analysis . Qualitativemethods . Quantitativemethods . Researchmethods
25

26 Q1Time (and order) matters

27CSCL is concerned with technology-mediated learning as it takes place in groups.
28Independently of the context of the learning—on the level of the individual, the group, the
29situation, or in the interaction of these—the main object of analysis in CSCL is a process,
30something that unfolds over time. As Koschmann (2001) suggested, it might be a defining
31element of CSCL that it is about “...studying learning in settings in which learning is
32observably and accountably embedded in collaborative activity” and that learning within
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33these settings is to be conceptualized as an “unfolding process of meaning making” (p. 19).
34More recently, Stahl argues that one can meaningfully speak about group cognition as
35different from the sum of individual cognitions (Stahl 2006). This is substantially different
36from the psychological notion of learning as a basically unobservable process, taking place
37in the mind/brain, a process we can observe only indirectly by measuring learning
38outcomes. However, for both views of learning, the sociocultural as well as the individual-
39cognitive, the nature of the process remains temporal: Learning unfolds over time.
40Temporality does not only come into play in quantitative terms (e.g., durations, rates of
41change), but order matters: Because human learning is inherently cumulative, the sequence
42in which experiences are encountered affects how one learns and what one learns (Ritter et
43al. 2007). This can certainly be generalized to learning in groups, and to the communication
44and interaction processes that take place in groups in addition to learning.
45Groups are subject to, and subject themselves to, change processes of various kinds. In a
46book that is dedicated to discern these types of processes, McGrath and Tschan (2004)
47distinguish four categories: (a) developmental processes, which are inherent to the system;
48(b) adaptational processes “generated by the system’s response to (actual or anticipated)
49changes in the embedding context” (p. 6); (c) learning processes, which are based on a
50system’s experience and reflection thereof; and (d) the system’s operational processes,
51actions, and activities, which are hierarchically and sequentially related. Learning is seen as
52different from adaptation in as much as it requires intentional reflection. We can speak, with
53McGrath and Tschan, of different types of “forces” that are responsible for these types of
54processes, but need to keep in mind that these forces refer to different types of causality.
55The developmental force would be akin to Aristotelian formal causality; adaptational forces
56are at least partially of the “push” causality type; the “operational” forces are mainly
57teleological in nature because they involve a strong element of goal orientation, of purpose.
58All four sets of forces are intrinsically temporal, and can operate simultaneously, as
59illustrated with Fig. 1. While a group is performing a certain task, it is also in a certain
60developmental stage, reacting to environmental changes, and learning from aspects of the
61task performance. McGrath and Tschan see all forces as acting continuously, but I suggest
62reserving this assumption for the developmental forces only. While they see process in
63terms of variables, and are, hence, “forced” to assume continuity of causation, the event
64perspective on process introduced below allows us to relax this assumption.
65Taking time and order into account becomes particularly relevant, but also more
66challenging, as the time frame considered for analysis grows. That CSCL is as much
67concerned with long-term collaboration as with short-term collaboration (e.g., talk) can be
68seen from an analysis of all empirical studies reported in the last two CSCL conferences
69(Chinn et al. 2007; Koschmann et al. 2005). As Table 1 shows, the majority of studies

Fig. 1 Types of processes effec-
tive in groups on different time
scales
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71studies concern groups that learned together for more than a month (of course, the duration
72assessed is not commensurate to “time on task”).
73The sequential organization of behavior has received extended treatment in Conversation
74Analysis, with one of its founders recently developing a whole book to the subject
75(Schegloff 2007). Sequential organization refers “...to any kind of organization which
76concerns the relative positioning of utterances or actions” (p. 2). Turn taking, that is, the
77relative order of speakers, is a kind of sequential organization (of talk), and the most
78extensively studied one. However, methods developed in Conversation Analysis and
79ethnomethodology, with their focus on talk and embodied physical (inter-)action (Goodwin
802000), do not carry over to interactions that are fragmented over time, stretch over longer
81durations, or are mediated by artifacts rather than talk. In situations where the people meet
82repeatedly (e.g., teamwork instead of helpline conversations), it is not only the context that
83matters, but each group has a history, and this history affects their activities and their
84learning (McGrath and Tschan 2004). Mercer (2008) picks up on this in a recent publication
85for the case of communication and learning in the classroom: “Analytical methods that do
86not recognize or deal with the temporal development of talk, its reflexivity, and its cohesive
87nature over longer timescales than one episode or lesson will inevitably fail to capture the
88essence of the educational process” (p. 56).
89In studies where interaction and learning is distributed over multiple sessions,
90establishing internal validity becomes difficult. For instance, as time increases, noncon-
91trolled factors will come into play with a higher probability than is the case for short-term
92collaboration, and changes in group membership become more frequent, thus qualitatively
93changing the experimental “unit.” Nonlinear changes will become more pronounced
94because of the self-sustaining feedback processes at work in groups over time (Arrow et al.
952000); that is to say, small differences can have large effects. Development in groups
96progresses in general in a nonlinear fashion, so that both the nature of the data as well as the
97nature of the underlying processes make it necessary to employ advanced statistical
98methods (Sloane and Kelly 2008). In general, order effects will become more pronounced
99as groups construct their histories and make use of them, through communication, as
100resources for interpreting events and planning future actions.
101Challenges such as these might partially account for the fact that, although CSCL
102researchers are privileged in the sense that they have direct access to processes as they
103unfold over time (via recordings), there is comparatively little research that makes use of
104the information contained in the order and duration of events. For instance, Kapur et al.
105(2005) made use of statistical analysis methods that take time into account, and Schümmer
106et al. Q4(2005) employ a similarity based metric to identify the similarity of change processes
107in log files. Muukkonen et al. (2007) use time series analysis, and Suthers et al. (2007)

t1.1 Table 1 Duration of group lifetime in studies from the CSCL 2005 and 2007 conferences

t1.2 CSCL 2005 CSCL 2007

t1.3 “Lifetime” of groups studied No. of studies Percentage No. of studies Percentage

t1.4 Single session (20–180 min) 25 35% 32 45%

t1.5 2–6 days 5 7% 6 8%

t1.6 1–4 weeks 7 10% 10 15%

t1.7 Longer (1.5 months–1 year) 34 48% 23 32%
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108apply graphical techniques for analysis. There is perhaps a trend, as exemplified by the
109Muukonen et al. study as well as by Mochizuki et al. (2007), that CSCL researchers who
110employ mobile devices also use these devices to systematically gather data over time with
111more regular measurement intervals than is the case in studies with stationary technology
112such as PCs.
113The goal of this paper is, in particular, to identify methods appropriate for the analysis of
114long-time changes (on a scale of days, weeks, months). The kind of data and the manner in
115which these data are analyzed and theorized, need to change substantially when moving
116from an analysis of short-duration sequences to long-term processes. One of the reasons
117being that group development processes come into play, another that multiple levels of
118analysis have to be considered now (Cress 2008; Sloane 2008). This requires extending the
119range of methods considered beyond those covered in reviews such as Sanderson and
120Fisher’s (1994) or Olson et al.’s (1994). In Organizational Science as well as in Sociology,
121and in particular in History, the challenges of analyzing processes that capture longer
122stretches of time and develop on multiple levels have been intensively discussed, covering a
123wider range of methods than is typically done in psychology and education (see also
124Langley 1999).
125Building on this literature, I argue in this paper that an event-based view of process and
126change is an important addition to the variable-centric approach. Variables are attributes of
127fixed entities defined by measurement (e.g., with a scale) or by a coding and counting
128procedure. It is important to realize that the decision to phrase research questions in terms
129of variables and relations between them is a very decisive one, because many other
130decisions depend on this one, both metaphysical (e.g., regarding type of causality) as well
131as methodological (e.g., methods of analysis) ones. Because variables are not the only
132means to formulate and test (quantitative) hypotheses about time-dependent processes and
133data, this paper develops the case for making more use of methods in CSCL research that
134take events as the basic unit of analysis. This not only allows us to include qualitative
135methods, but also to add additional quantitative and computational methods to the
136repertoire of CSCL.
137The paper continues by further elaborating the difference between variable- and event-
138based approaches for the analysis of temporal data, at the same time illustrating some of the
139typical methods. I then look into the question of how one can establish causality in the
140event-oriented approach, and touch on the relation between explanation and generalization.
141How to generalize over event sequences is a topic I cover because this is more challenging
142than in the variable approach and because a comparison of the respective generalization
143strategies further helps to come to terms with the differences between the two approaches.
144Methods for sequence mining, pattern identification, and process mining are introduced, all
145helpful for the business of generalizing from individual sequences. I close by identifying
146opportunities for combining variable- and event-based methods and pointing to possible
147next steps to advance process research in CSCL.

148The unit Q1of analysis: Variables versus events

149In order to illustrate our discussion, let us sketch a hypothetical, but prototypical scenario.
150The situation that we want to address is one where the researcher is interested in interaction
151and learning processes as they take place in online groups over time. The researchers want
152to test a process theory, one that says that groups need to go through a cycle of definition,
153conflict, and synthesis repeatedly in order to successfully engage in and learn from
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154discussion activities. Therefore, they have developed a coding scheme that can be applied
155to the content of the discussion board entries and categorize them in respect to these three
156dimensions. The coding scheme is developed and applied following best practice (e.g.,
157Strijbos et al. (2006)). Let us further assume that the researchers are interested in design
158issues pertaining to the visualization of argument threads. For this purpose, they have
159developed a new version of the discussion board, one that includes a graphical display of
160the argument structure.
161Our hypothetical research team has access to students in an online university course who
162are working together in several small groups. About half of the groups work with the old,
163run-of-the-mill discussion board, whereas the other half of the groups uses the new version.
164Data are recorded electronically in the form of the discussion board log file, so that we
165know who contributed what and when. Pre- and posttests are conducted to assess individual
166learning gains and during the pretest phase a number of other individual factors are
167assessed, including metacognitive capabilities. Knowledge building is assessed by
168analyzing the discussion board entries.
169How these data are analyzed will depend largely on what the researcher considers to be
170the main unit of analysis. Two conceptualizations can be distinguished here. The first one,
171variable-centred, relates to analysis of variance. The second one we call event-centred
172analysis or event analysis for short. I use the terminology suggested by Abell (1987) and in
173particular by Poole et al. (2000), whose excellent treatment of process analysis in the social
174sciences informed many parts of this paper. Figure 2a, b depict graphically the difference
175between these two views, and Fig. 2c their combination.

Fig. 2 Illustration of the variable (a) and event approach (b) and their combination (c)

Q3
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176Variable-based Q1account

177For the experimentalist, being trained in the variance method, a process takes the form of a
178category of concepts that mediate between independent and dependent variables. In CSCL,
179variables such as communication frequencies, learning techniques, and group decision-
180making techniques can play this role. Such “process concepts” are distinguished from other
181concepts considered to be static, such as individual learning capabilities, group makeup, or
182learning outcomes. A process theory for the experimentalist takes the form of a causal
183relationship between input and outcome variables mediated by process variables. The
184process concepts, like the static concepts, are operationalized as constructs and measured as
185variables, as fixed entities, the attributes of which can vary from low to high along
186numerical scales. A typical question that could be analyzed with this framework is the
187extent to which individual learning skills (exogenous independent variable) can predict
188learning outcomes (dependent variable), dependent on more or less successful group
189communication (endogenous independent variable).
190For our scenario, the initial analysis would be fairly straightforward. The experimentalist
191would “code and count”: code the data stored in the discussion board log, and count,
192yielding frequencies for the process categories (definition, conflict, synthesis). Then these
193measures can be set in relation to the treatment (tool variation) as well as in relation to other
194variables assessed, in particular to the dependent variables: individual learning and group
195knowledge building. A typical analysis of variance would yield results that show if the
196difference in the dependent variables can be related statistically to the variation in the tool,
197if this relation is mediated by the process variables, and if there are (statistical) interactions
198with the other variables assessed (for instance, metacognitive competence).
199In order to test the process theory in more detail—which says that we should see, in
200successful groups, cycles of issue definition followed by conflict among positions followed
201by synthesis/integration of positions—the researcher could treat each of these categories as
202a variable, using the categories’ frequencies assessed at regular intervals (daily, say) as the
203quantitative attribute, and treat them as three time series. For each individual time series,
204curve fitting can be performed to test if they form a sine wave—as they should if the
205assumption of “repeated cycles” is correct. Having established this (and, before that, having
206established that the time series variables follow approximately a Gaussian distribution), the
207researcher could go ahead and use multivariate time series (ARIMA) models to test the
208dependencies between the three time series (they should follow each other and “peak” with
209a certain time lag, but in the order definition-conflict-synthesis) and to test if and to what
210extent extraneous factors, in particular, the type of discussion board, affect the time series.
211Based on the same logic, one could also look for the effects of differences between groups
212(using a criterion for “successful” and “less successful” groups, for instance) and for
213differences between individuals (using metacognitive competence as a criterion, for
214instance).
215There is neither need nor space for statistical details here (see e.g., Box and Jenkins
2161976). Instead, a word on the assumptions behind the variable-centred research method
217may be in order. A basic assumption that underlies any research logic based on the analysis
218of variance is that independent variables are acting continuously on the dependent variables.
219I would argue that this basic assumption is, for CSCL scenarios, often not met. Obviously,
220students in our scenario will, over the duration of the semester, do many things other than
221the type of activities captured by the measurements. Even when they are actively engaged
222online, only a small set of the factors represented as independent variables might be
223effective at any point in time; for instance, the students using the enriched discussion board
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224might not attend to the information offered on the visualizations. This fragmented nature of
225the underlying causal processes is not easily captured in variable-centred models.
226Another thorny problem in process studies arises from the fact that all variables must be
227measurable at the same time point, and the temporal unit or measurement must be equal for
228all variables (minimal unit of time). Because we will find, in any group, processes unfolding
229on different timescales (McGrath and Tschan 2004), relating them in one model is a
230challenge indeed. As was mentioned before, the variable-centred method cannot
231accommodate qualitative changes in the variables. For instance, when a group loses a
232member or gets a new member, it is not clear if variables that build on group activities can
233be considered to be qualitatively the same as before.

234Event-based Q1account

235Processes can be analyzed with statistical methods that do not require the data to be
236represented as variables. An example for such stochastic methods is Markov Chain
237modeling. Stochastic modeling methods have a fairly long tradition in the social sciences
238and psychology, for example, Coleman (1964), and Suppes and Atkinson (1960), yet are
239not as widely taught and used in learning research as are variance analysis methods and
240other members of the General Linear Model family.
241This is not the place to introduce stochastic modeling in any detail, but in order to
242provide a flavor, a simple example might be appropriate. Let us again assume that we want
243to test if the life cycle model that presupposes that (successful) groups will go through a
244cycle of Definition-Conflict-Synthesis is supported by the data. One can also see this as a
245dialectical model if the cycle is not imposed on groups by the pedagogical design or
246strongly afforded by tool design but emerges out of the interactions. We could have coded
247incidents directly in these terms, yielding a event sequence in each group of a form like
248DDDCCDCCSCCSSSS… , with D for Definition, C for Conflict, S for Synthesis. To test if
249this mini-theory describes the behavior in the groups adequately, one could use a Markov
250Chain model. Markov chains belong to the class of homogenous Markov models, which are
251appropriate for cases where time can be considered as consisting of discrete intervals and
252where the only aspect we need to know about an event is when it was present in time.
253Being stochastic, Markov models do not predict the occurrence of a specific event, but
254predict the probability distribution of a set of possible events at a given point in time. The
255Markov chain predicts the probability of occurrence of an event at time t as a function of
256the event occurring immediately before. No other information is taken into account.
257A more complex, but also more realistic case is one where we do not define events in
258terms of the comprehensive descriptors (Definition, Conflict, Synthesis) directly, but code
259on a finer level of analysis. For instance, we could code the interactions in the groups with a
260taxonomy that is inspired by speech act or dialogue act theory (adapted to the asynchronous
261case). We would use, say, a coding scheme with 12 different categories, c1 to c12 (omitting
262any further details here). We would then look at sequences in the groups of the form like …
263c3c1c1c5c3c12c3c6c6c6c1c2c6…. To test our mini-theory of the three phases in this case,
264phasic analysis (e.g., Holmes 1997) or Hidden Markov modeling (Rabiner 1989) could be
265used.
266These matters cannot be discussed further here (see Soller et al. 2002 for an example of
267Hidden Markov modeling in CSCL). Suffice it to say that further generalizations of Markov
268models have been developed. For instance, nonhomogeneous Markov processes add
269variables other than the events to the model. With them, we could test if the two tool
270conditions (conventional vs. enhanced discussion board) make a difference, or if individual
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271differences add predictive power. So called semi-Markov process models allow information
272about the duration of events to be included (still assuming discrete event).
273Like variable-based modeling, Markov models entail the assumption that history does
274not matter: “The entire influence of the past occurs through its determination of the
275immediate present, which in turn serves (via the process) as the complete determinant of the
276immediate future.” (Abbott 1990, p. 378). Histories are a kind of “surface reality” (Abbott)
277that are generated by deeper, underlying probabilistic processes that find expression in the
278value of variables or the conditional probabilities of event transitions. In the variable-based
279case, this “deep structure” is expressed in terms of linear transformations; in the event-
280based case, as transition probabilities. For situations where history (and/or anticipated
281future) does matter, we need to find different forms of modeling a process.
282There are other views of process as event sequence that do not depend on this limited
283view of history entailed in the Markov assumption. These will be discussed further below.
284But before that, I will further elaborate the difference between the variable- and event-based
285views of process.
286By using stochastic modeling, an important decision has been made: The phenomenon
287under study is not phrased in terms of variables and their relations. We are not primarily
288looking at how quantitative attributes change their value over time, but deal with a
289(constructed) event sequence directly. The limitations of the variable-centered approach (in
290the social sciences) to describe change processes are mainly due to a restricted view of
291causation. Independent variables are seen as “acting on” dependent variables; the
292underlying process is supposed to operate continuously over time; the nature of the
293variables does not change over time—all that can change are the values of the quantitative
294attributes used to operationalize the variable—and no qualitatively different kinds of forces
295are deemed necessary to explain changes in the dependent variables. If too much variance
296remains unexplained, one has to look for additional independent variables and/or include
297specifications of relationships (statistically: interactions) between the variables. The
298underlying notion of causality is efficient causality, the “push” type causality that has been
299so instrumental for theories in physics.
300To account for group (and in general, for social) phenomena, a process method should,
301in addition to efficient cause, be able to deal with at least two other kinds of causes (of the
302four Aristotle identified overall [Aristotle 1941]), namely: formal cause, referring to the
303patterns of which things are made, and final cause, the end for which things are made, or a
304teleological “pull.” In groups, formal causality is at work whenever constraints—as
305imposed on them in terms of workflow, scripts, or roles—are effective. For instance, many
306events taking place in online learning groups are a consequence of the manner in which
307groups have been set up (scripts, roles, workflow, deadlines). In organizations, the way
308team members interact with each other and with other teams is to some extent affected by
309the organizations’ design and their business processes, all best captured as formal cause,
310and not requiring reduction to efficient causes (where the invariants and the explanatory
311power would be lost because many efficient cause processes can instantiate a single formal
312cause relation). Similarly, explaining human behavior (in various levels of aggregation:
313individuals, pairs, groups, and larger structures) in terms of goals, that is, driven by an end,
314adds considerable explanatory power, in particular for the (rather typical) cases where a
315goal can be reached in many different ways. Any account of these different paths toward an
316end in terms of only efficient causality would fail to identify the goal orientation.
317Viewing a process in terms of sequences of events provides space to consider all four
318kinds of causality: efficient, formal, final, and material. Efficient cause can be modelled in
319terms of variables defined over events, formal cause in terms of event configurations (such
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320as routines, procedures, practices, scripts) and final cause in terms of narrative structures
321that capture the goal orientation (purpose, ends) of a sequence. Material causes can be
322expressed in terms of constrains that the physical environment (e.g., architectural features)
323impose on actions and sequences of actions.
324A pivotal difference to the variable-centred method is that event analysis does not start
325by framing the world in terms of variables, that is, fixed entities with varying attributes.
326Instead, event analysis “...conceptualizes development and change processes as sequences
327of events which have unity and coherence over time” (Poole et al. 2000, p. 36). While
328variable- and event-centred analysis can be combined (see below), conceptually they are
329quite different and these differences are important to keep in mind (Mohr 1982).
330What counts as an event is basically up to the researcher, constrained by theory and informed
331by research goals; events are not “raw data,” or incidents. In particular, events need to be
332defined dependent on the identification of the central subject under study because entities
333participate in events (for a more systematic treatment of the process of defining events, or
334colligation, see Abbott 1984). The central entity in event analysis is some kind of “actor,” but
335the “actor” does not have to be a person; it can also be a group, an organization, a nation, an
336idea, a technology—dependent on research question and level of analysis. I will not go into
337more details with respect to event coding here, because this kind of content analysis is well
338understood and has recently been the subject of methodological reflection in CSCL (Strijbos
339et al. 2006; Wever et al. 2006). Although I gloss over these issues, it needs to be kept in mind
340that the conceptualization of what counts as an event and what event types to distinguish, as
341well as the measurement of the occurrences of an event—which is a theoretical structure, a
342concept, hence not “identical” with its occurrences—play a critical role in the research
343process because they determine to a large extent the quality of the analyses and reflections
344that build on observations of events.
345In our hypothetical CSCL study scenario, the main entities are individuals and groups. That
346implies then that events are constrained to those incidents in which either individuals or groups
347can participate. For our scenario, a process researcher would focus on the sequences of
348activities, incidents, crises, or stages that unfold in the groups over the duration of the semester.
349An explanation for an observed chain of events would take the form of a narrative that explains
350how event e(t) is related to events e(1) ... e(t-1) in terms of the actors’ goals, motives, moves,
351and so forth, and would keep track of how events happening outside the groups might affect
352them. The process is conceptualized here as a developmental event sequence, not a change in
353values of process variables. The research process yields a kind of narrative for each case, a
354case being a single person or a group, dependent on the level of analysis chosen.

355Causation and Q1generalization in the event-centred approach

356While there can be little doubt that the event-based ontology of process and change has
357merits, it is less than straightforward to employ it as an explanatory device: In what sense
358can we say that a sequence of antecedent events can explain a certain state of the world? In
359other words, how can we establish the claim that a chain of antecedent events causes a
360target event? Questions of causation are tightly linked to generalizations.

361Causation: Q1Covering laws versus narrative structures

362A major advantage of the quantitative-experimental, variable-based approach is that
363generalizing is straightforward and testing for the validity of the generalization is well
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364understood. In a sense, generalizations are built in right from the start, as soon as variables
365are used and as soon as explanations take the form of quantitative relations between
366antecedent and dependent variables. Furthermore, the General Linear Model sees the value
367of a particular variable y as a function of a set of antecedent variables x1 to xn, plus an error
368term: y=Xb+e (with y, b and e being vectors, X a matrix with dimensions number of cases
369(m) * number of antecedent variables (n)). While the value of y for each case may vary,
370dependent on the values of the antecedent variables x1 to xn (captured in the vector b), the
371relation between y and the antecedent variables is the same for all cases. This is, of course,
372nothing else than a particular mathematical form of the covering law principle that sees a
373particular observation as explained if (and only if) this observation can be derived from a
374general law (in the quantitative realm: if the value of a particular variable for a particular
375case can be expressed as a function of a set of antecedent variables).
376How do we establish causality in the event-based case? In this case, we can explain the
377event y as being brought about by a sequence of events, but this kind of explanation is
378obviously very different from employing a covering law. In particular, the causality at work
379here is not of a hypothetico-deductive or inductive-probabilistic covering law model type,
380but one of action causality (Abell 2004). This type of causality can be invoked when
381changes in the world are linked together by (human) actions. To the extent that one has
382evidence that a state of the world is transformed through the direct or indirect evidential
383action(s) of individual or collective agents, the causality in the particular case has been
384observed (Abell 2004, p. 293). Instead of a covering law, a narrative structure is invoked in
385order to establish causality. This kind of explanation is typically not used in a predictive
386manner, but the narrative formulation takes place after the transformation of world states is
387observed.
388As Abell (2004) observes, the pivotal difference between the covering law model and
389the narrative structure one (or between nomothetic and idiographic causality) is that in the
390covering law case, proper explanations are only possible after generalizations and
391comparisons have been performed, whereas in the narrative account the explanation (for
392a specific case) comes first, followed by attempts to generalize to other cases (if and when
393the researcher is inclined to do so).
394The issue of single-case causality has received extensive analysis (for an overview see Danto
3951985) that has led to a certain consensus amongst philosophers of science that singular causes
396might exist. More problematic than this ontological claim is the epistemological aspect (Abell
3972004, p. 294): How can we ground claims that we know they exist? In other words, how can
398we distinguish, for a single case, between a consequence and a mere sequence? Before that:
399Where does a consequential chain of events begin? It turns out that answering such questions
400typically requires referring to generalizations.
401Hence, even in cases where the covering law model is (for good reasons) not accepted
402on ontological grounds, it is difficult to avoid generalizations and case comparisons
403altogether when one wants to establish claims regarding causal connections between events.
404Different from the variable-based approach, for the event-based approach generalizing does
405not come “automatically” and it is not as “straightforward.” In particular, a dimension or
406metric, a distance measure, needs to be established along which to generalize from single
407sequences to patterns.

408Generalizing Q1by pattern extraction

409Abbott (1990) provides an overview of methods useful for finding patterns in sequence
410data, distinguishing between methods employing or not employing inter-event distance

P. Reimann

JrnlID 11412_ArtID 9070_Proof# 1 - 02/06/2009



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

411measures. An example for the later is calculating a simple Spearman rank correlation
412coefficient as a measure of the resemblance of one sequence to another. Repeating this for
413all pairs of observed sequences yields an inter-sequence distance matrix that can then be
414subjected to any standard classification technique, such as cluster analysis, to identify
415groups of sequences. Calculating the correlation coefficient as a direct measure of similarity
416between two sequences is, however, only meaningful for non-recurrent sequences in which
417every event is observed once and only once. Furthermore, as permutation statistics,
418Spearman rank correlation coefficients and similar measures have problems with extensive
419ties and missing events.
420The already mentioned Markov modeling method is an approach to identify patterns in
421sequences that can be applied to recurrent sequences without employing any notion of
422inter-event distance. We have described its main assumption already—sequences are
423explained as random realizations of an underlying stochastic process—and need to mention
424here that in order to estimate the parameters of a Markov model, large data sets are needed
425(Kemeny and Snell 1976).
426However, most pattern searching methods for sequence data build on an inter-event
427distance matrix. There are three general ways to measure inter-event distance (Abbott
4281990). Firstly, one can use temporal distance between events across cases. This is often
429done for non-recurrent sequences. Secondly, one can use categorical resemblance and
430measure inter-event similarity analogous to kinship in a family tree. This can be done for
431recurrent sequences, where temporal distances are problematic to use as a distance measure,
432but requires, of course, that a (hierarchical) category system for event coding exists and can
433be reliably applied. The third type of distance measure builds on sequence transformation
434costs, using so-called optimal matching or alignment techniques. These can be applied to
435recurrent sequence data, and have seen widespread use in (molecular) biology (Miura
4361986). The main idea is straightforward: For any two sequences, the distance between the
437two is determined by calculating the “cost” of transforming one (by insertion, deletion, and
438substitution) into the other. Different costs can be associated with the three types of
439transformations, and/or with the event types subject to the transformation. Also, the total
440costs of a sequence transformation can be combined algebraically in different forms (e.g.,
441total, mean,…). In any case, the resulting distance matrix can be used for classification
442(e.g., clustering) as well as scaling (e.g., Multi-Dimensional Scaling) to identify families of
443sequences and dimensions of differences, respectively (Abbott and Hrycak 1990).
444Pattern extraction is one way of generalizing from particular event sequences while
445sticking to an event ontology: The generalization is accomplished without using variables,
446that is, attributes of an event. I want to introduce another approach—Process Modeling—
447that can be used for the same purpose, but is in interesting ways different from pattern
448analysis: It can deal with information about concurrent events (parallelism), and it employs
449two levels of description, a model of a process, and instances of the model.

450Generalizing Q1by process modeling

451Process Models are interesting conceptually because they describe processes holistically,
452incorporating a priori assumptions about the form a process and all its instantiations can take.
453This makes Process Models suitable to describe designed processes, with the design effecting
454process enactment through prescriptions (e.g., collaboration scripts) and/or through
455constraints built into the collaboration software (e.g. an argumentation ontology, or specific
456features in the user interface). Process Models are interesting, furthermore for practical
457reasons, as they can under certain circumstances be identified automatically from log data.
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458A Process Model in the meaning intended here is a formal model, a parsimonious
459description of all possible activity sequences that are compatible with a model. (Note that I
460use capitals to distinguish Process Modeling/Models from other forms or modeling process,
461such as mathematical ones). Processes can be modeled in many forms, for example, using a
462system dynamics formalism for continuous process models. The class of Processes Models
463that I want to concentrate on here pertain to the large class of discrete event systems
464(Cassandras 1993). Finite state machines are one type of modeling language that can be
465used to describe and analyze discrete, sequential-event systems (Gill 1962). Another one is
466the language and theory of Petri nets (Reisig 1985) which present the advantage of
467modeling concurrency in addition to sequentiality.
468Petri nets can be mathematically described as bipartite directed graph with a finite set of
469places P, a finite set of transitions T, both represented as nodes (round and rectangular,
470respectively), two sets of directed arcs, from places to transitions and from transitions to places,
471respectively, and an initial markup of the nodes with tokens (usually representing resources).
472The Petri net shown in Fig. 3 for instance, expresses the fact that all process instances start
473with A and end in D. It also expresses the fact that the only predecessor to B is A, the B can
474only be followed by D, and that possible predecessors for D are B, C, and E. Furthermore, it
475shows that B, C, and E can be executed in parallel, or in any order. The black token in the
476initial node represent a token, which enables the transition A to be fired. Petri nets are
477nondeterministic but a transition can only be fired if all the predecessor nodes have at least
478one token. (Two “technical” transitions are included in the net, and And Split (AS) and an
479And Join (AJ) in order to express formally the parallelism between activities B and C.)
480Process Model representations that take the form of Petri nets and similar formalisms
481have several interesting features. For instance, since they have formal semantics, they can
482be used to determine computationally if a specific activity sequence is commensurate with a
483model or not; like a grammar, a model can “parse” an activity sequence. For the same
484reason, one can use them to simulate potential (non-observed) model behavior
485computationally, and to compare different models with respect to certain formal parameters.
486The fact that they come with a graphical notation can be exploited for learning purposes:
487The graphical representations could be made an object for comparison and reflection for the
488group members, that is, serve as a mirroring or feedback device (Kay et al. 2007).
489In terms of the terminology introduced in this paper, Process Models (e.g., expressed as
490a Petri net) constitute a holistic view of a process: A process has a beginning and an end, it
491comprises events (activities), and the possible event/activity sequences are subject to more
492or less numerous constraints. Even a simple Petri net is a basic, but powerful language to
493represent, for instance, the logic of a group script. While Petri nets are one out of many
494possible formalisms to express a process succinctly, they have another advantage: They can
495be automatically discovered from performance data.
496A specific class of data mining methods can be applied in situations where we can
497expect that a group realizes a multistep process over time. This would be the case, for
498instance, when the group behavior is controlled by a script (Dillenbourg and Hong 2008;

Fig. 3 Example for a Petri net
description of a process

Q3
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499Kollar et al. 2006), or when the nature of the task suggests a specific sequence of activities,
500such as phases of a decision-making process (Poole and Roth 1989). Process Model mining
501(or process mining, for short) assumes that (a subset of) observed activities can be related to
502one or more processes, or in other words that (a subset of) observed activities constitutes an
503instance of a process. Collaboration scripts frequently used in CSCL, for instance, can be
504seen as processes, and the activities performed by students enacting the scripts being the
505process instance. Another example: normative models of group decision making can be
506seen as constituting processes, the enacted decision processes being instances thereof.
507Process mining can serve a number of purposes, among them: (a) Discovery—No a
508priori model exists. Based on an event log, a model is constructed; (b) Conformance—An a
509priori model exists. Event logs are used to determine the extent to which the enacted
510collaboration corresponds to the model; (c) Extension—An a priori model exists. The goal
511is not to test but to extend the model, for instance with performance data (e.g., durations of
512activities). Extended models can then be used, for example, to optimize the process (Van
513der Aalst and Günther 2007).
514We look here only at the discovery task because it is conceptually and computationally
515the most demanding one, although conformance checking is of obvious relevance, for
516instance in the context of our hypothetical study. The input to process mining is an event
517log, as shown in hypothetical form in Fig. 4. The result of process mining is a process
518model, for instance, a Petri Net as shown in Fig. 3.
519The cases in the event log refer to different instances of the same process. Different cases
520can result from different groups enacting the same process, or the same group enacting the
521process at different times. The example event log in Fig. 4 illustrates the later case: A team
522formed by six members enacts a process composed of activities A–E five times. For
523example, if we look at the first enactment, it takes the form ABCD. The fifth enactment
524takes the form AED. The Petri net in Fig. 3 is a formal representation of the process logic
525underlying the activities depicted in the event log. For instance, it expresses the fact that all
526process instances start with A and end in D. It also expresses the fact that the only
527predecessor to B is A, the B can only be followed by D, and that possible predecessors for
528D are B, C, and E. Furthermore, it shows that B, C, and E can be executed in parallel, or in

Fig. 4 An event log example
(from Van der Aalst and Günther
2007)

Q5
Q3
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529any order. It is assumed that two activities are parallel, or concurrent, if they appear in any
530order in the log.
531An important difference between visualizations resulting from process mining (as in
532Fig. 3) and visualizations such as an uptake graph (Suthers 2006) is that the former are
533constructed automatically, whereas most visualizations used in qualitative research, such as
534uptake graphs, are constructed manually. Generating graphical process representations
535automatically has the obvious advantage of saving researchers’ time, and in addition opens
536up the possibility to use them as a resource in the hand of teachers and teams. However, the
537transformation of input data from a log file into a meaningful process representation can, at
538this stage, not be fully automatized unless the event data come from a highly structured
539workflow environment. For the kind of data typical for CSCL research, in most cases
540various steps of data cleaning, event identification performed by human raters, and tuning
541of parameters of process mining algorithms are required. Furthermore, for “real” CSCL data
542process model types such as Petri nets with a formal semantics will regrettably not be
543suitable, among other reasons, because they are overly deterministic. One will have to
544employ heuristic methods, which are more complex both algorithmically and with respect
545to interpretation of results (for an example involving the analysis of chat data, see Reimann
546et al. 2009).
547These practical obstacles not withstanding, process modeling in the sense introduced
548here can be an interesting component in the methodological arsenal of the CSCL researcher
549because it combines a holistic view of a process with graphical representations on an
550algorithmic basis (with at least in some cases clear semantics). When used in an inductive,
551process mining mode, it adds to the repertoire of sequence mining methods applicable to
552CSCL data (Kay et al. 2006), but the approach can also be used to formulate process
553models and test them in a more deductive fashion, typical for experimental studies. For
554those CSCL researchers particularly interested in collaboration scripts, process models offer
555ways to formulate scripts as well as to computationally assess, based on log data, to what
556extent scripts have been enacted.

557Combining Q1variable-centred and event-centred methods

558The variable-centred approach works well for research questions that involve relationships
559among variables. An event analyst has nothing against variables, as long as they are not
560seen as the only way to describe and explain change. I already mentioned that stochastic
561event sequence analysis can incorporate information that takes the form of values of
562variables by employing non-homogeneous Markov models. However, the potential for
563method integration is not exhausted there. While process analysis makes use of stochastic
564modeling methods because they use event type directly and thus preserve the nominal
565character of events and the integrity of event sequences unfolding over time, it can also
566employ event variables. Event variables are quantitative aspects of events, such as duration
567and intensity, or any other quantitative dimension that can be associated with an event. For
568such variables, variants of time series analysis can be used. Also, variables can be used in
569process research that describe the characteristics of event sequences, such as their
570periodicity, and these variables can figure as independent or dependent variables in theories
571of how such characteristics affect outcomes or are affected by other factors, respectively.
572Since event analysis is more of a generalization of, rather than an antagonist to, the
573variable-centred method, experimental design with its meticulous control of external
574variables can be integrated. This is important for CSCL when we are interested in
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575experimental trials of pedagogies and technical tools. There is no reason why such
576treatments should not be realized and included in process analysis, both in its narrative part
577as well as in the statistical analysis. Variables can represent contextual factors, and/or
578experimental conditions. What event analysis reminds us, though, is that we should not
579harbor overly simplistic assumptions as to the causal relations between “treatments” and
580groups’ behavior, in particular when groups interact with technology over longer stretches
581of time.

582Conclusions

583Starting from the observation that the analysis of change processes—in individuals in the
584form of learning, in groups in the form of participation and knowledge building—is a
585central concern for CSCL and that CSCL researchers have privileged access to detailed
586change data, we have noticed a lack in the use of (formal) methods that take the core
587dimension of change—time—into account. This is a particular concern in light of the fact
588that the majority of studies conducted in CSCL deal with change processes that have a
589duration of weeks and months. If individual and group processes are analyzed on such a
590scale without taking into account history, sequence, dynamics, in short: time, then many of
591the resulting findings are of limited value. I argued further that for studies that aim to
592analyze change unfolding over days, weeks, and months, the quantitative method dominant
593in the social and learning sciences—variable-centred variance theory—is of limited value,
594not only because of the problems arising from “controlling” extraneous variables over
595longer stretches of time, but more importantly because of problems with the fundamental
596notion of variable and process. Methodologies that focus solely on order in short-term
597interactions, such as Conversation Analysis, are also not applicable to the analysis of
598processes that unfold over long-term, and fragmented, forms of interaction.
599Therefore, I introduced a more general process approach that builds on the notion of
600event and narrative explanation. CSCL research can gain from an adoption of a wider range
601of process methods in a number of ways. By the adoption, group process research gets a
602sound methodological foundation, descriptive and experimental approaches can be better
603integrated, and insights informative for design can be derived. As has been the main
604argument on these pages, the variable-centred method, dominant in most experimental
605learning research, is not the only method for conducting (formal, quantitative) process
606research in CSCL. It makes many restrictive assumptions on the kind of data useful for
607analysis (namely variables only) and on the kinds of causation allowed to explain change.
608Adapting the more general stance to process analysis described above, we gain a more
609widely applicable yet by no means less rigorous method to analyze group processes.
610Event analysis holds the potential to provide a methodological link between those
611researchers in CSCL who are producing descriptive, “thick,” interpretive accounts of
612observations on learners’ computer-mediated interactions, and those in the research
613community who work experimentally and quantitatively. The link results mainly from the
614fact that the event-centred approach makes extensive use of event descriptions: They enter
615into narrative accounts and, optionally, into statistical analysis without losing their
616distinctiveness. Hence, independent of the research orientation (descriptive, experimental,
617design-oriented), activities such as defining, identifying, distinguishing events and event
618sequences as well as providing qualitative, narrative accounts of events and sequences are
619part of a common set of research activities and become shareable. The fact that there are
620many common elements to the research “work” across different epistemological
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621orientations is better exploited in the event-view of process than with the variable-centred
622perspective alone.
623By the same token, the event-centered method can contribute substantially to design-
624oriented research. A comprehensive, detailed descriptive account of how individuals and
625groups interact with technology over time is an important component to inform
626instructional and software designers in the early stages of the development process, and it
627provides opportunities in the trial phase to gauge for (positive as well as negative) side
628effects of introducing methods and technologies. An example for the value of employing
629(qualitative) process studies for information technology design is the research on
630structuration and appropriation processes (Poole and DeSanctis 2004). But it needs to be
631said that this line of research has less implications for interface design than for
632organizational design and change management.
633Analyzing the effects of specific tool and design decisions over longer stretches of time
634is also important for a realistic assessment of costs and benefits; for instance, Zumbach and
635Reimann (2003) observed that providing feedback to group members on interactional
636aspects was much more effective in the early stages of groups’ lifetime than later and that,
637hence, this information should be phased out over time in order to reduce the cognitive load
638(the “costs”). Still, the contribution to design, in particular to “interface” design, is the least
639satisfying aspect of the strategy for method combinations suggested here. While researchers
640both in the nomothetic and idiographic tradition might appreciate some of the suggestions,
641the Great Unified Methodology for CSCL that pays due respect to all three epistemic
642orientations—nomothetic, idiographic, and design-perspective—is not identified here.
643While there is ample concern for sequence data analysis in psychology (and to some
644extent in CSCL research), the analysis of long-term change processes is mainly taking place
645in disciplines such as organizational research and history, as well as developmental
646psychology. However, understanding organizational change processes and how they affect
647and are affected by collaborative technologies will become very important when (and if)
648CSCL follows the proposal that CSCL needs to concern itself more with processes that take
649place on a meso level, a level “...intermediate between small scale, local interaction and
650large-scale policy and institutional processes” (Jones et al. 2006, p. 37). In general, when
651collaboration tools are used over extended periods of time, as they increasingly are, due to
652the ubiquity of technology for collaboration and learning, then knowledge about how our
653technologies and tools affect individuals and groups over time becomes essential. As we
654move out of the laboratory and provide people with tools for their daily use, some of the
655most interesting processes are those that unfold over time (such as appropriation moves,
656Poole and DeSanctis 2004). They are not observable in the usability lab or the short-term
657study looking into second-by-second interactions and immediate (learning) effects.
658Researchers in the learning sciences, education, and psychology know of the pivotal role
659of time and process in their areas of research. Logistical hurdles have been reduced to a
660significant extent, certainly in CSCL, where recording collaboration automatically is the
661rule rather than the exception. This does by far not solve all questions of data acquisition
662over time, but it provides a good basis for progress (Markauskaite and Reimann 2008).
663Problems remain in research training: The almost exclusive focus on variable-centred
664methods in quantitative training, as well as the almost total lack of concern for formal
665analysis of qualitative data are both not productive. Problems remain in the area of research
666dissemination and publication. Editors and reviewers of the leading journals need to be
667aware of methodological alternatives to canonical quantitative and qualitative research, and
668be perhaps more critical when evaluating claims regarding the analysis of “process.”
669Longitudinal research designs, including design-based research are hard to fit into the
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670conventional journal paper format, in particular when involving case studies, data in
671multimedia format, and narrative accounts. We cannot let it come to the point where the last
672step in the research process, the formal publication, blocks innovation in research methods
673and strategies. Publishers need to extend their services, and need to extend the very notion
674of what it means to “publish,” or they will be increasingly side-stepped. Problems remain
675regarding the adequacy of modeling methods for dealing with the complexities of human
676communication, cognition, and group behavior. However, different from the first two
677problems areas, these are “productive problems”: They drive the research process forward.
678Time is indeed precious. Too precious to be ignored or not treated adequately when
679formulating and testing theories of working and learning collaboratively. But the time of CSCL
680researchers is also precious; process studies are very work intensive, thus any method that can
681help us to share the workload and to conduct research cooperatively across epistemic interests
682and paradigms, without forcing us to gloss over fundamental differences, should be welcomed
683by the field. As a next step, shared online collections of (annotated) sequence data could be
684created that can be analyzed from multiple perspectives and with various methods or tools. The
685time gained might be most profitably spent on developing and testing process models and
686theories, of which there is a genuine lack in CSCL. While this paper has little to say on
687substantive theories of change in (learning) groups, it is obvious that existing process models in
688CSCL, which are predominantly describing short-term interactions, will need considerable
689theoretical extensions to connect with theories of long-term change.
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