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12Abstract In this paper, I review both mathematics education and CSCL literature and
13discuss how we can better take advantage of CSCL tools for developing mathematical proof
14skills. I introduce a model of proof in school mathematics that incorporates both empirical
15and deductive ways of knowing. I argue that two major forces have given rise to this
16conception of proving: a particular learning perspective promoted in reform documents and
17a genre of computer tools, namely dynamic geometry software, which affords this
18perspective of learning within the context of mathematical proof. Tracing the move from
19absolutism to fallibilism in the philosophy of mathematics, I highlight the vital role of
20community in the production of mathematical knowledge. This leads me to an examination
21of a certain CSCL tool whose design is guided by knowledge-building pedagogy. I argue
22that knowledge building is a suitable pedagogical approach for the proof model presented in
23this paper. Furthermore, I suggest software modifications that will better support learners’
24participation in authentic proof tasks.
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26Knowledge forum

28Proof is an important issue in mathematics education (Hanna 2000). Not only is it
29considered to be the essence of mathematics (Laborde 2000), but it also occupies a
30significant place in the recent reform documents of the National Council of Teachers of
31Mathematics (NCTM 2000). Traditionally, student proving activities have often been
32conceptualized one-dimensionally (both in curricula and in classroom practices) as
33providing a deductive argument. That is, students are either presented with or asked to
34write rigorous logical arguments to establish the truth of mathematical theorems. Therefore
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35a certain view of mathematics is reinforced in schools: that one straightforwardly reaches a
36true conclusion in mathematics by starting with a set of axioms, the building blocks of any
37mathematical structure, and applying the rules of logic to those axioms. Empirical and
38inductive ways of knowing are almost always left out of the proving activity. Such a
39perspective does not create much room for students to view mathematics as a living body of
40knowledge that is produced collaboratively as a response and contribution to an evolving
41culture.
42In this paper, I review both mathematics education and CSCL literature and discuss ways
43to improve CSCL tools to teach mathematical proof. More specifically, I introduce an
44emerging model for mathematical proof—geometrical proof in particular—for high school
45mathematics. This notion of proof incorporates both deductive and empirical ways of
46knowing, thus more closely reflecting expert mathematicians’ proving activities. Such a
47model of proof gains momentum from the interaction of two forces: the NCTM-led reform
48that favors a doing perspective of mathematics, and the availability of dynamic geometry
49software (DGS), a genre of computer tools that allows experimentation and thus enables
50such a vision. Considering that mathematics is a product of collaborative work, I will then
51examine the potential of a certain CSCL environment, Knowledge Forum, and its guiding
52pedagogical approach, knowledge-building, to support the proof model presented in this
53paper. While I will highlight its promise, I will also suggest modifications in such software
54to make learners active participants in proving in CSCL environments.
55Throughout this paper, by “deductive way of knowing” I refer to a certain way of
56justifying knowledge claims based on the logically connected sequence of assertions from
57accepted truths, which broadly include axioms, theorems, mathematical conventions,
58notions, methods, and definitions, for or against a mathematical statement (Stylianides and
59Silver 2004). An empirical way of knowing, on the other hand, is based on inductive, non-
60conclusive evidence for the truth of a mathematical statement (ibid.). In particular, this
61mainly includes checking a proper subset of all possible cases and using these to gain
62conviction for the validity of a mathematical claim. I use the expression ‘proof model’ to
63refer to the possible set of activities students might engage when working on a proof task—
64which is a problem to prove (Pólya 1981). Therefore a proof model might only constitute
65deductive or empirical ways of knowing. In this paper, however, I make the suggestion that
66it should integrate both.
67I should also note that the proof model presented here is most relevant at the high school
68level. Although younger learners can build mathematically sound arguments (see Yackel
69and Hanna 2003), in high school the expectations are higher. It is at the high school level
70that NCTM expects students to understand and produce deductive arguments in forms that
71would be acceptable to professional mathematicians (NCTM 2000). Also, I particularly
72concentrate on geometrical proof, given that DGS largely targets geometry. While DGS
73could be used with other mathematical subjects, such as calculus or algebra, it mainly
74affords geometrical investigations.
75Below I start by examining the nature of mathematical knowledge in the course of the
76philosophical shift from absolutism to fallibilism. Highlighting the essential role of
77community in the production and legitimization of mathematical knowledge, I point out
78that math education reformers in the U.S. recognize the changing assumptions about the
79nature of mathematical knowledge at the philosophical level. Following this is a view of
80school mathematics that emphasizes ‘doing’ mathematics rather than mastery of recorded
81knowledge. This perspective encourages a new dimension in learners’ proving activity;
82learners can explore mathematical ideas through empirical exploration, which, even if
83theoretically desirable, had been not very feasible before the proliferation of computational
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84technology in the classroom. The availability of DGS in classrooms, however, precipitated
85realization of the practicality of teaching a notion of proof that incorporates both empirical
86and deductive ways of knowing. I next turn to the prospects of CSCL software that affords
87authentic activity by setting community participation as the essential condition in the
88production knowledge. In particular, I examine the aptness of Knowledge Forum and its
89guiding theoretical background, knowledge-building pedagogy, for supporting the notion of
90proof presented. The unique nature of proving has also led me to offer technical
91modifications in order to enrich and support students’ experiences with proof.

92The nature of mathematical knowledge

93For over 2,000 years, mathematics has been viewed as the source of infallible knowledge
94(Ernest 1998; Romberg 1992). The central activity through which mathematicians produce
95such knowledge is proving, which constitutes the means of justifying mathematical
96knowledge. As Davis and Hersh (1981) put it, for most “the name of the mathematics game
97is proof; no proof, no mathematics” (p. 147). The belief that mathematical knowledge is
98infallible arises from a certain conception of proof that Ernest (1998) describes as the
99following: “The idea underpinning the notion of proof is that of truth transmission. If the
100axioms adopted are taken to be true, and if the rules of inference infallibly transmit truth
101(i.e., true premises necessitate a true conclusion), then the theorem proved must also be
102true. For there is an unbroken and undiminished flow of truth from the axioms
103transmitted through the proof to the conclusion” (sic. p. 6). Lakatos characterized such a
104system as Euclidean (Rav 2007).
105However, as Romberg observes, a growing number of philosophers of mathematics are
106challenging the perspective that mathematics is indubitable and infallible (Davis and Hersh
1071981; Ernest 1998; Lakatos 1978; Rav 2007). Emphasizing the aspect of mathematics as
108the process of discovery, Lakatos showed that proof is not a procedure that enables the
109transmission of truth from assumptions to conclusions. Instead, “it means explanations,
110justifications, elaborations, which make the conjecture more plausible, more convinc-
111ing, while it is being made more detailed and accurate under the pressure of counter-
112examples” (Davis and Hersh 1981, p. 347). While Lakatos applied his epistemological
113analysis to informal rather than formalized mathematics (ibid.), perhaps Rav (2007)
114presents a more radical argument when he says: “Mathematical proofs deploy genuine
115mathematical techniques not reducible to formal logic” (p. 26), arguing that even
116formalized mathematics may not be infallible. For Rav, mathematical reasoning does go
117beyond the rules of standard logic: mathematicians reason and make inferences based on
118meanings and informal notions of truth; therefore, there is no guarantee that proofs are
119flawless or without error.
120At their core, these perspectives highlight the importance of the role of community in the
121production, and more importantly legitimization, of mathematical knowledge. The
122emphasis on community rather than on detached formal logic also explains why, at
123different periods in time, the notion of rigor in mathematics had different meanings. For
124Ernest (1998), the philosophy of Lakatos suggests that mathematics is fundamentally a
125community activity: “It suggests a pattern for the development of mathematical concepts,
126conjectures, proofs, and theories, as a collective enterprise and that it indicates the role and
127variety of interactions contributing to this development” (p. 128). Along with the work of
128individuals, the process of dialectical negotiation plays an essential role in the creation of
129mathematics.
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130Along the same lines, Livingston (1999, 2006) shows how the appearance of necessary
131truth or absolute certainty in mathematics can be examined as a cultural phenomenon,
132closely tied to the material aspects of the mathematical culture. This analysis leads to the
133idea that mathematicians are enculturated into the practices of proving, and the main
134difficulty for newcomers stems from the failure to easily adopt the mathematical dis-
135course. His argument implies that we need to make novices into active participants, as
136only when they are brought into the mathematical culture will the act of proving make
137sense to them.
138The view that mathematics is a process of inquiry, and that it is negotiations within the
139mathematical community that determine the legitimacy of mathematical knowledge rather
140than some unquestionable rules of logic, has important consequences for the teaching of
141mathematics (Romberg 1992), and therefore for proof. When this perspective is adopted, no
142longer can teachers present mathematical proof primarily from the deductive perspective, in
143which truth flows from axioms to conclusions through an unbreakable chain of reasoning.
144The reformers in the U.S. seem to recognize this philosophical shift in mathematics from
145absolutism to fallibilism. The recent mathematics education reform movement led by
146NCTM (1989, 2000) first recognizes proof as the essence of mathematics and promotes a
147“doing” perspective of mathematics that underlines the dynamic and collaborative nature of
148mathematical knowledge. In doing so, the NCTM-led reform becomes one of the forces
149challenging the conception of students’ proving activity as a merely deductive experience.

150NCTM-led reform

151Proof has a significant place in the recent reform movement in the United States (NCTM
1522000). Although there was a time when proof had lost ground to heuristics both in the U.S.
153and U.K. (Hanna 2000), mathematical proof and reasoning is set forth as one of the five
154process standards in the NCTM reform document, Principles and Standards for School
155Mathematics (PSSM) (NCTM 2000). In this document proof is assigned the key role of
156promoting mathematical understanding in all mathematical content areas at all grade levels.
157PSSM recommends that instructional programs from prekindergarten through grade 12
158should enable all students to:

159[r]ecognize reasoning and proof as fundamental aspects of mathematics; make and
160investigate mathematical conjectures; develop and evaluate mathematical arguments
161and proofs; select and use various types of reasoning and methods of proof (NCTM
1622000, p. 56).

163164Not only does NCTM assign a key role to proof in mathematics learning, it also
165promotes a fallibilist perspective about mathematics (Romberg 1992). In contrast to the
166absolutist view, fallibilism rejects the notion that mathematics is a finished product or a
167fixed body of knowledge to be transmitted and mastered by students. In NCTM documents,
168“‘[k]nowing’ mathematics is ‘doing’ mathematics. A person gathers, discovers, or creates
169knowledge in the course of some activity having a purpose” (NCTM 1989, p. 7). This
170process and meaning-centered perspective has led many researchers to think about what
171makes proof meaningful and thus to reexamine the nature of mathematicians’ proving
172activity.
173We know that students have many difficulties with proof (Senk 1985; Silver and
174Carpenter 1989; Usiskin 1987). In discussing the ways to remedy the problem of teaching
175and learning to prove, Senk (1985) emphasizes that proving needs to be made meaningful
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176for pupils so that they understand and appreciate mathematical proof the way
177mathematicians do. The same recommendation is also made by others. Reiss and Renkl
178argue that the belief that a mathematical proof is a linear, systematic and formal sequence of
179steps is one important factor that impedes learning. Citing Boero (1999), they point out that
180the expert act of proving is not based on a linear model. Rather than following a straight
181logical argumentation, mathematicians continuously move between explorative, inductive,
182and deductive processes.
183Moreover, for mathematicians proof is not necessarily a prerequisite for conviction;
184mathematicians are usually convinced about the “truth” of the theorem prior to proving it
185(de Villiers 1998). In mathematical research, “[C]onviction often precedes the actual proof
186and is probably far more frequently a prerequisite for finding a proof” (de Villiers 1997). As
187Davis and Hersh (1981) state, the reason mathematicians want a proof for the famous
188Riemann Hypothesis is that they know from convincing heuristic reasoning that it is true
189but seek to understand why it is true. Thus investigation and heuristic explorations are parts
190of the proving process.
191As a result, there is a growing emphasis on the role of empirical explorations in
192mathematics education. Hoyles (1997) observes that researchers argue that students should
193have opportunities to test and refine their conjectures, which will give them conviction of
194their conjectures’ validity. For Edwards (1997) the phase of investigations/explorations can
195be considered the conceptual territory before proof. It is a “space” of potential precursors to
196proof that includes “[w]ays of thinking, talking, and acting that support the goal of seeking
197and establishing mathematical certainty” (ibid., p. 189). Although she cautions that
198engagement with exploration activities does not necessarily lead to the construction of a
199formal rigorous proof, they can nevertheless provide the basis for a richer understanding of
200a proof. In her study, she argues that although students were not able to create proofs of
201their own, they were knowledgeable enough to understand the proof offered by the
202investigator after working with a microworld where they had the chance to explore the
203Euclidean transformations of planes.
204In summary, mathematical learning that emphasizes a doing perspective tends to favor
205experimentation and exploration of mathematical ideas. While earlier conceptions of proof
206excluded empirical ways of knowing within proving activity, new ideas about the nature of
207learning have proposed the opposite. Researchers have come to believe that exploration/
208experimentation of mathematical ideas is an important ingredient of proving activity, for it
209reflects the work of expert mathematicians, gives students the opportunity to work from
210their own intuitions and investigations, and thus potentially makes proving more
211meaningful and accessible.

212The role of dynamic geometry software (DGS)

213The realization of the aforementioned vision of proving has been enabled by the immediate
214availability of a very powerful set of computer tools, namely dynamic geometry software
215(DGS), in classrooms. DGS materializes the vision described above, since it facilitates
216heuristic explorations. Experimentation is now possible in mathematics classes due to two
217main features of DGS: the ability to drag objects to manipulate them dynamically, and
218visual control.
219The defining feature of DGS is the continuous real-time transformation called
220‘dragging.’ When the elements of a drawing are moved, this feature allows the construction
221to respond dynamically to the altered conditions (Goldenberg and Cuoco 1998) by
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222maintaining the invariant. This aspect of DGS facilitates conjecturing and more inductive
223approaches to geometric knowledge, as students can reason about the generality of their
224hypotheses for several cases (Kaput 1992).
225Another distinguishing aspect of DGS is its visual control in contrast to the symbolic
226control required in programming environments such as LOGO (Healy and Hoyles 2001).
227For some, the ability to program a computer is a valuable educational activity, for it will
228provide the foundational/intuitional skills to learn mathematics and science easily (di Sessa
2292000; Papert 1980). However, as Norman’s (1994) famous Hanoi Puzzle example
230illustrates, we humans are better at operating by perceptual routines. In that regard, DGS
231can be considered a more accessible medium through which one can express mathematical
232ideas and explore geometrical relations.
233To better understand how DGS affords an empirical way of knowing, consider the
234example given below. In the first figure, the medians of triangle ABC were constructed in
235the Geometer’s Sketchpad (Jackiw 1995, 2001), one of the most well known DGS
236applications (Fig. 1). Q2Students can see that the medians concur at point G. Figures 2 and 3
237were captured by dragging point C to different places. Although it is not possible to
238represent the real-time transformation on paper, the reader can imagine that medians keep
239intersecting at one point as one changes the shape of the triangle ABC by dragging
240its vertices.
241Furthermore, use of DGS does not simply make the task more efficient; it also has more
242educational value. DGS constructions differ from drawings in that they are based on theory
243and their production requires theoretical geometry knowledge. For this reason, some tasks
244are modified when working with DGS (Laborde 2001). These are the tasks for which the
245DGS environment deeply affects the solving strategy. Laborde (ibid.) gives the example of
246constructing a square using DGS versus squared paper. With squared paper such
247construction consists essentially of drawing four sides of equal lengths along the lines of

Fig. 1 Triangle ABC and its
medians constructed using the
Geometer’s Sketchpad
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248the paper. While this is achieved by following the lines of the paper and counting the
249squares, which is controlled by perception, the same task in DGS must be done by
250satisfying both the perpendicularity and the congruence of sides. The congruence cannot be
251obtained perceptually by counting, but uses a circle as a tool for transforming a given
252distance. Therefore the task with DGS requires more mathematical knowledge about the
253properties of a square and the characteristic property of a circle.

Fig. 3 Same construction, vertex
C is dragged some place else

Fig. 2 Same construction, vertex
C is dragged
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254Conceptualizing proving activities

255Emanating from the interaction between the ideas of reform and the immediate availability
256of computational technology in classrooms is a notion of proof that encompasses both
257empirical and deductive ways of knowing. Structuring students’ proving activities along
258both dimensions will give students the opportunity to experience mathematics as a process
259of inquiry, not a finished product that needs to be mastered. DGS affords an environment in
260which students can work with hunches and gain the confidence necessary to construct
261proofs for their conjectures. This perspective also implies that students should be initiated
262into a discourse in which inventing proof problems is as valuable as solving them. As Pólya
263(1945) states, if a student never has the chance to solve a problem s/he invents, her/his
264mathematical experience is not complete.
265In addition, this conception of proof will provide the opportunity to emphasize the
266explanation function of proof (that is, providing insight into why the theorem is true) as a
267viable alternative to the notion of proof as verification presented in the traditional teaching
268approach (de Villiers 2003; Hanna 2000). While proof has several functions in
269mathematics,1 for Hanna, the explanation function is the most important one in the
270educational domain.

271Knowledge-building pedagogy as a test case

272How, then, should new technologies be utilized to support both empirical investigations and
273deductive reasoning while “doing” mathematics as a community product? Following
274Lipponen (2002), the computer can afford students such engagement with proof in at least
275two different ways. First, students’ collaborative activities can be supported around the
276computer in a face-to-face setting. Here the computer mainly acts as a referential anchor
277mediating the coordination of collaborative actions. The contributions made can be
278observed and structured by the teacher. The second possibility is to use a networked
279learning environment to structure the collaboration. This second use involves significant
280innovation, especially for those who believe that educational technology needs to broaden
281the technology repertoire beyond classroom-oriented tools and exploit networking
282infrastructures in order to maximize learning opportunities (Pea et al. 1999). The use of
283CSCL software generally belongs to the second category.
284Among the software tools included in the genre of CSCL software, Knowledge Forum,
285introduced by Scardamalia and Bereiter (2003, 2004), deserves special attention, since its
286main goal is to initiate learners into a knowledge-creating culture. The design of
287Knowledge Forum is guided by knowledge-building pedagogy, which aims to support
288practices that are geared towards building knowledge. From the fallibilist point of view, this
289perspective appears to be a fitting pedagogical model for learners’ creation of new
290mathematical knowledge.
291Knowledge-building pedagogy highlights “knowledge advancement as idea improve-
292ment rather than as progress toward true or warranted belief” (Scardamalia and Bereiter

1 Along with verification, these functions include explanation (providing insight into why a mathematical
statement is true), discovery (the discovery or invention of new results), and communication (the negotiation
of meaning), intellectual challenge (the self-realization/fulfillment derived from constructing a proof), and
systematization (the organization of various results into a deductive system of axioms, concepts and
theorems) (de Villiers 2003).
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2932004). This idea underlies the belief that authentic knowledge-building work could take
294place in classrooms. Idea improvement is by far the most essential characteristic of
295knowledge-building work carried out at professional levels—and just like professionals,
296learners can create mathematics that is in constant production.
297As mentioned, this pedagogy also guided the design of computer tools. Knowledge
298Forum is second generation software2 aimed at bringing school activity into a closer
299alignment with the processes by which knowledge advances in the disciplines (Scardamalia
300and Bereiter 2004). To this end, Knowledge Forum has a number of features that afford
301students’ knowledge-building within a community. An asynchronous discussion environ-
302ment that allows reflection and revision appears to be an especially important characteristic
303in increasing the authenticity of student activity. Not only can users post content with notes,
304but they can also organize the content to add structure to it. In addition, Knowledge Forum
305scaffolds learning by structuring contributions students can make. Some of the theory-
306building scaffolds are “my theory,” “new information,” “this theory explains that,” etc.
307Although knowledge-building pedagogy and its accompanying software appear very
308likely to promote a “doing” perspective of mathematics, not many studies report the use of
309Knowledge Forum in mathematics learning. Those studies that do exist suggest that CSCL
310software can support a “doing” perspective of mathematics as envisioned by the reform in
311math classes as well.
312One study reporting successful use of CSCL software in mathematics classrooms was
313conducted by Nason and Woodruff (2003). They argued that using Knowledge Forum
314along with the model-eliciting problem solving approach enhanced the authenticity of
315classroom mathematical activity. They pointed out the difference between school
316mathematics activities and those of mathematicians: while mathematicians often form
317research communities to produce and improve mathematical conceptual artifacts, school
318mathematics mostly focuses on individual completion of worksheets and textbook
319exercises. With students engaged in model-eliciting problem solving within Knowledge
320Forum, the researchers observed that students’ activity had much in common with many
321mathematical research communities in regards to symbolizing, communicating, mathema-
322tizing, and collective understanding. In addition, at the beginning of the study most students
323had absolutist perspectives about mathematics. However, by the end of the study,
324mathematics was viewed as the outcome of social processes and mathematical knowledge
325as fallible and eternally open to revision.
326Nason and Woodruff’s (2003) work emphasized that the nature of mathematical
327problems used in CSCL mattered in establishing and maintaining an authentic knowledge-
328building community. It also showed that CSCL software has effectively supported
329collaborative knowledge-building in mathematics classrooms. They attributed this success
330to the features of Knowledge Forum: an asynchronous discussion environment that
331encourages reflection and revision by removing time and place constraints, and the
332scaffolds built into the software that structure the discourse.
333Another successful implementation of CSCL software in mathematics classrooms was
334reported by Moss and Beatty (2006). Their purpose was also to investigate whether
335Knowledge Forum could promote inquiry orientation in mathematics, as it had been observed
336to do in science classes. More specifically, they looked at how, working collaboratively,
337students managed to find algebraic rules for mathematical generalization problems.
338Upon starting their research project, Moss and Beatty (2006) believed that a
339collaborative environment supported by computers would provide an authentic platform

2 The first generation was Computer Supported Intentional Learning Environments (CSILE).
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340for student participation for solving generalization problems. They found that students both
341discovered and revised multiple rules for these problems. Like Nason and Woodruff (2003),
342they thought that idea development and knowledge-building were supported by certain
343features of the software: the asynchronicity of the interaction environment, which gives
344extended time to think, and a structure that allows revision at any time.
345These studies suggest that students can be led into meaningful proof activity in CSCL
346environments. The pedagogy behind Knowledge Forum in particular parallels math
347reformers’ proposals for school mathematics. Further, the research suggests that the
348features of Knowledge Forum, such as the asynchronous discussion environment and the
349availability of scaffolds structuring discourse, can also support types of activity that
350resemble the activity of professional mathematicians more closely. However, some
351technical modifications might be necessary in order to make a knowledge-building
352environment useful for the proof model developed in this paper.
353Moss and Beatty’s (2006) findings suggest that the text-based discourse space has
354benefited students, since, as these researchers believed, students made more efforts to
355communicate their ideas, and the need to clearly communicate them enhanced students’
356mathematical understanding. In the case of proof, however, I propose that the text-based
357character of such environments needs to be supported with a DGS component to enable
358students to generate, test, and share their conjectures.
359In a paper written in 1999 describing the research agenda for the Center for Inno-
360vative Learning Technologies (CILT), Pea et al. (1999) set an expectation for the
361upcoming learning technologies: “We anticipate new technologies supporting highly
362interactive learning conversation, mediated by complex symbolic representations, such as
363mathematical notations, scientific visualizations, and multimedia case studies. These
364technologies will draw jointly on powerful modeling tools and participants’ informal
365sketches and annotations” (p. 31). In also setting it as a research agenda, they particularly
366highlight the importance of the shared active representations in science and mathematics that
367afford successful learning conversations online or locally. Although this category includes
368simulations, visualizations, mathematical notations, text, graphs and so on, the specific
369emphasis was on active simulations that can be jointly controlled by remote participants. Pea
370et al. summarize the importance of such shared representations as creating the common
371ground for conversational support and helping to make sense of a given problem together.
372The proposal made here parallels this idea. Collaborative environments aimed at
373supporting students’ proving activity, for geometry proofs in particular, should include a
374DGS component. More specifically, a CSCL tool that could enable students to participate
375meaningfully in building mathematical arguments should provide a shared whiteboard on
376which students can easily and mutually create, edit, and display dynamic constructions,
377linked with equations and graphs. In fact, research in CSCL that focuses on building tools
378for shared referencing highlights the importance of such environments (Stahl 2006).

379The need to support proof activity for learners

380However, it would be naïve to think that simply integrating DGS into students’ proving
381activities will result in students working like mathematicians. Many researchers have raised
382concerns that students using DGS could be misconceptualizing the nature of mathematical
383truth; that is, coming to believe that a confirmation of a conjecture for several cases would
384secure its truth (Allen 1996; Chazan 1993b; Hoyles and Jones 1998). Hoyles and Jones
385caution that when pupils can generate their own empirical evidence, this means that they
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386have little chance to appreciate the importance of logical argument and to produce a proof.
387They point to the danger of DGS; that it may limit the mathematical work of the majority to
388empirical argument and pattern-spotting. As conviction can be obtained easily by dragging,
389DGS environments may also prevent students from understanding the need and function of
390proof (Hadas et al. 2000).
391One of the strongest critics of DGS is Allen (1996). He urges caution in the use of DGS
392based on the argument that DGS tends to blur the distinction between illustration and proof.
393He gives the example of a dissection proof of the Pythagorean Theorem in which two
394smaller squares are partitioned in such a way that their parts can be reassembled to cover
395the largest square. Since no previous theorems are invoked, such an illustration cannot be
396considered proof. Furthermore, Allen claims that DGS makes little contribution to the
397analysis of construction problems in Plane Geometry, and none at all to the proof necessary
398to show that the construction is correct.
399Obviously, while DGS enables a crucial dimension of more meaningful proving activity
400(exploration and experimentation), the very same aspect that affords experimentation
401(dragging) appears to be the source of concern if it is also used for justification, that is, to
402validate the truth of a mathematical claim. How could designers eliminate this drawback?
403Hoyles and Jones (1998) note that there is already a noticeable trend toward using DGS
404to identify patterns, generate cases, measure lengths and angles, etc.—in other words,
405simply to provide data. Their concern is that this data-driven approach could cause students
406to side-step all the important mathematical content, if we are not careful in our attempts to
407incorporate powerful technologies into mathematics teaching and learning. In developing
408DGS activities that lead to meaningful experiences with proof, it is essential that we
409encourage learners to make conjectures about the relationships between geometrical
410objects, and that we design activities in such a way that students can link empirical and
411deductive reasoning throughout the mathematical activity.
412Similarly, Reiss Q3and Renkl (2002) emphasize that as exploratory processes are an
413important part of mathematical activity, learning environments should both provide
414opportunities for individual exploration and foster mathematical argumentation. Yet
415empirical exploration of a problem does not necessarily lead students to mathematical
416proof. Thus, “[a] learning environment for proof and argumentation should not only allow
417for exploration and investigations but should also provide specific help and support with
418respect to the proving process” (ibid., p. 30). As Hanna (2000) makes clear, there are two
419reasons for this: first, certainty in mathematics is only achieved by proof; second, it is the
420responsibility of educators to teach that reason to our students—that is, formulating and
421testing conjectures does not constitute proof.
422Furinghetti et al. (2001) liken this approach in mathematics, which promotes transition
423from empirical exploration to theoretical thinking, to experimental disciplines. They say the
424analogy lies in the fact that, in both cases, the starting point is observation and exploration
425in which regularities are discovered, and only later are convincing arguments provided in
426order to validate or refute these conjectures. The transition to theoretical thinking, however,
427“[r]equires reasoning within a theory and producing arguments which must be valid within
428that theory” (p. 324).
429Empirical studies conducted in classroom settings also support these insights by
430highlighting the role of ‘social infrastructure’ (Bielaczyc 2001) in realizing the potential of
431DGS as a useful tool for teaching proof. More specifically, with carefully designed tasks, in
432a classroom environment that supports conjecturing and deductive justifications, along with
433teacher guidance, students can benefit from the DGS environment in developing proving
434skills (Hadas et al. 2000; Healy and Hoyles 2001; Jones 2000; Mariotti 2000, 2001;
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435Marrades and Gutierrez 2000). All these studies lead to the conclusion that in learning
436environments adopting DGS, students should be explicitly asked for and guided towards
437deductive arguments after their explorations in order to avoid teaching misconceptions
438about mathematical truth. Therefore the tools that aim to support proving should be
439structured in a way that encourages students to build deductive arguments after they
440generate and test their ideas empirically.

441Scaffolding proof tasks

442So far one of the main ideas I have highlighted is that technology provides the opportunity
443to initiate learners into a knowledge-building discourse in mathematics. Meanwhile, the
444software tools can also be designed to provide support for the challenging aspects of the
445subject matter (Reiser 2004). This kind of support is typically captured by the notion of
446‘scaffolding,’ which originates in Vygotksy’s work. With scaffolding learners can complete
447complex tasks that would be otherwise beyond their reach.
448Reiser (2004) states that one way tools can help learners with difficult tasks is they can
449distribute work and reduce what is expected from learners. For instance, calculators offload
450computation and allow learners to focus on the conceptual aspects of a task. Meanwhile,
451tools can also transform tasks. This idea is generally captured by the notion of the
452‘reorganizing’ nature of tools (Pea 1985). In mathematics education research, there is a
453growing recognition of the “reorganizer” nature of DGS. That is, several authors point out
454that DGS does not simply make the task more efficient; rather, it fundamentally changes the
455task (Healy and Hoyles 2001; Jones 2000; Lerman 2001). Within the DGS learning
456environment, “[t]he computer is more than a mediating bridge, as its function cannot be
457simply reduced to a learning aid—to be discarded after the concepts and procedures have
458been acquired” (Holzl 2001, p. 81).
459Therefore, the design of the tool directly influences the task. Reiser (2004) thinks this is
460an advantage for instructional designers, since they can shape the task for learners through
461the design of the tools. Reiser offers two mechanisms of scaffolding in software tools.
462These tools can structure the task and they can problematize subject matter by causing
463students to consider aspects of the task that they might otherwise overlook.
464Reiser’s concept of structuring includes decomposing the task, focusing effort, and
465monitoring. The software can decompose a complex task by designating the necessary
466actions to take and their order. Such systems generally use checklists or diagrams to help
467learners identify and implement the processes they are to perform. The software tools can
468also help learners focus on the aspects of the task that are more productive for learning. One
469way to achieve this is by helping learners work together more effectively. Keeping track of
470plans and monitoring progress is another support mechanism software tools can provide.
471Prompts, agendas, or graphical organizers can remind learners of important goals and
472criteria to apply to their work.
473Another mechanism for scaffolding is making some aspects of student work
474“problematic.” Instead of simplifying the task, the software can lead learners to confront
475the complex nature of the task. Problematizing involves focusing students’ attention on an
476aspect of a situation that needs resolution, which might be achieved by creating a sense of
477dissonance or curiosity. It also requires an affective component. This involves eliciting
478student commitment to the extent that they can fully engage with the task. Reiser (2004)
479states that “the notion of problematizing goes beyond avoiding giving too much help or
480fading the help as learners develop increasing expertise. This core of this approach is to
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481guide the learner into facing complexity in the domain that will be productive for learning,
482for example, by connecting their work on a problem to disciplinary frameworks” (p. 288).
483Therefore, focusing on the problematizing potential of software tools can help address the
484difficulties students have with proof.
485And indeed, students have many difficulties with proof. High school students perform
486poorly on proof-related tasks (Senk 1985; Silver and Carpenter 1989; Usiskin 1987) and
487demonstrate limited understanding of mathematical reasoning and proof (Chazan 1993a;
488Coe and Ruthven 1994). Coe and Ruthven found that students’ proof strategies were
489primarily and predominantly empirical. They observed that the way students validated a
490conjecture mostly took the form of testing it against a few examples. Chazan summarized
491research findings on students’ views of empirical and deductive argumentation into two
492categories. The first is the students’ belief that empirical evidence counts as proof. Some
493students are content that acts that produce empirical data, such as measuring, can allow one
494to reach certain conclusions in mathematics. The second finding is that students believe that
495deductive proof is simply evidence. In other words, they believe that deductive proof is not
496sufficient to secure the truth of the statement; additional checks will be necessary to secure
497that truth. As discussed earlier, DGS might just aggravate these difficulties by functioning
498as a powerful medium for granting the truth of a mathematical statement.
499Problematizing tools can address learner difficulties by eliciting articulation, eliciting
500decisions, and bringing gaps and disagreements to the surface. Eliciting articulation
501involves the ways in which the software tool restricts student contributions. The theory-
502building scaffolds of Knowledge Forum, such as “my theory” and “new information,” fall
503into this category. Software that elicits decisions similarly may require explicit
504representations more precise than natural language or students’ paper and pencil work.
505That way it might enable learners to make critical decisions, such as classifying the way
506evidence connects to positions in an argument. Reiser (2004) states that such constrained
507representations that are created and shared collectively eventually become the reference for
508further identifying issues that need resolution. Bringing disagreements to the surface can be
509vital to achieving disciplinary goals.
510Following Reiser’s (2004) thinking, one can conclude that Knowledge Forum’s scaffolds
511can also act as problematizing mechanisms, and this has great potential. Other examples
512include software such as Galapagos Finches (Reiser et al. 2001) and Animal Landlord (Smith
513and Reiser 1998). Galapagos Finches forces students to express their hypotheses within a
514scientific theory, such as natural selection. Animal Landlord asks students to organize their
515analyses into ‘observations’ and ‘interpretations’ and thus reinforces a key epistemic
516distinction in scientific practice. This can also be achieved in the case of proof. The software
517can ask students to sort their arguments into two kinds: conviction (gained by empirical
518investigation) and (deductive) proof. Such an explicit distinction can also provoke discussion
519addressing the interrelation between the two. Furthermore, the software must reinforce the
520need for proof in order to grant the truth of a mathematical statement. Technically such
521software can make use of scripts to achieve this end. The success of scripts in areas such as
522argumentation (Stegmann et al. 2007) suggests that this technique can also be effectively
523applied to foster proof skills by addressing both aspects of the proof model.

524Conclusions

525In his seminal work How to Solve It, Pólya (1945) identifies two faces of mathematics: one
526that is deductive science, which is presented in a Euclidean sense, and another that is

Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9043_Proof# 1 - 16/05/2008



EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

527experimental and inductive activity, which characterizes mathematics in the state of
528becoming. Pólya states that both are as old as the discipline itself. Yet, in school
529mathematics the dominant pedagogical approach has been the deductive face of
530mathematical knowledge; this has especially been the case for proof.
531However, the recent math education reform in the U.S. and the availability of DGS pose
532challenges for this conception of proof in high school mathematics. The reform movement
533recognizes the philosophical shift in the discipline of mathematics and proposes a model of
534learning that closely represents the work of professional mathematicians. In this paper, I
535suggest that in the case of proof, this entails incorporating both empirical and deductive
536ways of knowing into school learning. By affording empirical investigations, DGS makes
537the implementation of this perspective possible in classrooms.
538Work in learning sciences also converges upon the general idea that knowledge is a
539human construction. Knowledge-building pedagogy is one attempt aimed at translating
540knowledge creation as it is handled in larger society into school settings. This pedagogical
541model also informs the design of software tools that aim to support knowledge-building
542practices. Knowledge-building pedagogy and its accompanying software tools hold great
543undeveloped promise for the proof model described in this paper in particular and for
544mathematical learning in general.
545One premise of this model is that learning is an integral part of the knowledge-building
546process. That is, students learn by engaging in knowledge creation practices. The design of
547software is guided by this principle. An asynchronous learning environment, the ability to
548structure contributions, and the features that can direct discourse (scaffolds) are all geared
549towards supporting knowledge-building.
550However, along with emphasizing the potential of knowledge-building and its software
551for mathematical learning, I have suggested some modifications in this or similar software
552tools to better support students’ participation in proof tasks. The first suggestion was to
553integrate DGS into a networked knowledge-building environment, where students can test
554their hypotheses and share their findings. Although browser-based technology still poses
555constraints to the mutual manipulation of dynamic representations, this would be a
556worthwhile endeavor.
557At the same time, I also cautioned against the idea that simply integrating DGS into
558a knowledge-building environment will be sufficient for teaching learners to work like
559mathematicians. Yet following Reiser (2004), I suggested that building ‘problematizing’
560mechanisms into the software might help learners to map their strategies onto important
561disciplinary distinctions. For the proof model presented in this paper, this can be achieved
562by using a script that explicitly requires learners to sort their ideas into two categories:
563empirical conviction or deductive proof. In addition, the script should also require
564students to build deductive arguments after they generate and test their ideas in an
565empirical way.
566However, are there any contradictions between this level of structuring and the theory
567behind knowledge-building pedagogy? In other words, is there a conflict between what
568needs to be transmitted to students and the processes that make them active constructors of
569knowledge? The principles behind the knowledge-building pedagogy suggest that the
570efforts guided by the principle of advancing knowledge may not always overlap with the
571efforts to cover the whole curriculum.
572Scardamalia and Bereiter (2004) introduce the notion of “epistemic artifacts” to capture
573the idea that members use both abstract (theoretical) and concrete models in order to
574advance knowledge. The creation of further knowledge is possible with these epistemic
575artifacts. They say that the value of epistemic artifacts is judged by the extent to which they
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576enable the further growth of knowledge, rather than by their conformity to accepted
577knowledge. Along with an emphasis on advancement of knowledge, Scardamalia and
578Bereiter (2003) also highlight the distributed nature of knowledge-building work: “An
579optimal KBE (knowledge building environment) will exploit the fullest possible potential
580of ideas to be improved by situating them in worlds beyond the minds of their creators and
581compounding their value so that collective achievements exceed individual contributions”
582(p. 270). It seems that these ideas put emphasis on learning as ‘participation’ rather than
583learning as ‘acquisition’ of pre-determined facts (Sfard 1998). Emphasis on the distributed
584view of knowledge and endless process for idea improvement in its strongest form might go
585against the long-established ideals of education. Yet what Scardamalia and Bereiter (2004)
586say is students are legitimate participants:

587At the deepest level, knowledge building can only succeed if teachers believe students
588are capable of it. This requires more than a belief that students can carry out actions
589similar to those in knowledge creating organizations and disciplines. It requires a
590belief that students can deliberately create knowledge that is useful to their community
591in further knowledge building and that is a legitimate part of the civilization-wide

effort to advance knowledge frontiers (p. 26).
593

594The dilemma surfaces: children are in need of mastering necessary knowledge and it is
595through education that they become ready for the actual work later in their lives. Though
596this dilemma is perhaps the main reason approaches like the one proposed in this paper
597frequently remain peripheral in education, rather than taking center stage, the dilemma
598can equally function as a constructive limitation to further advance our own conceptions
599of education.
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