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12Abstract Research related to online discussions frequently faces the problem of
13analyzing huge corpora. Natural Language Processing (NLP) technologies may allow
14automating this analysis. However, the state-of-the-art in machine learning and text
15mining approaches yields models that do not transfer well between corpora related to
16different topics. Also, segmenting is a necessary step, but frequently, trained models
17are very sensitive to the particulars of the segmentation that was used when the model
18was trained. Therefore, in prior published research on text classification in a CSCL
19context, the data was segmented by hand. We discuss work towards overcoming these
20challenges. We present a framework for developing coding schemes optimized for
21automatic segmentation and context-independent coding that builds on this segmenta-
22tion. The key idea is to extract the semantic and syntactic features of each single
23word by using the techniques of part-of-speech tagging and named-entity recognition
24before the raw data can be segmented and classified. Our results show that the coding
25on the micro-argumentation dimension can be fully automated. Finally, we discuss
26how fully automated analysis can enable context-sensitive support for collaborative
27learning.
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30Why should online discussions be coded automatically?

31Online discussions have been widely used in the field of CSCL to foster collaborative
32knowledge construction. Learners work together to exchange ideas, negotiate meaning and
33formulate understanding (De Laat and Lally 2003). One important feature of online dis-
34cussions is that this kind of communication produces a huge body of digital data as a
35byproduct of the interaction. Researchers are therefore confronted with the opportunity as
36well as the challenge of analyzing online discussions at multiple levels to understand the
37underlying mechanisms of group interaction (Strijbos et al. 2006), such as quality of
38argumentation, or social modes of interaction (Weinberger and Fischer 2006). A variety of
39multidimensional frameworks have been employed to apply appropriate analysis on dialogic
40argumentation (Clark et al. 2007). In this study, we focus specifically on analysis of what has
41previously been called micro-argumentation (Weinberger and Fischer 2006), with the idea of
42expanding to other dimensions of analysis in future work.
43Evaluation of discussion quality consumes a huge amount of resources in research
44projects related to online discussions. In order to address this problem, Rosé and colleagues
45(2008) reported a series of experimental studies with about 250 online discussions
46(Stegmann et al. 2012; Stegmann et al. 2007) where about 25 % of all human resources in
47the research project were spent analyzing online discussions on multiple dimensions. Human
48coders had to be trained to annotate segments of these data using a multi-dimensional coding
49scheme that operationalized aspects of content as well as manner of argumentation and
50social modes of interaction. While uncovering findings related to how group knowledge
51construction works often make those efforts worth the time and energy they require,
52analyzing a huge body of online discussions by hand is an arduous task that slows down
53the progress of the research substantially. An automatic and thus faster classification of
54online discussions may affect the whole research process positively. One possible impact
55may be that an increasing number of researchers may be willing to analyze online discus-
56sions on multiple dimensions. Moreover, some of the resources made available through these
57automatic coding efforts may then be used to conduct follow-up studies or to try out
58additional pioneering approaches to data analysis.
59Automatic classification may not only facilitate research on online discussions: It also
60allows for adaptive collaborative-learning support (Kumar and Rosé 2011; Kumar et al.
612007; Walker et al. 2009) to foster the quality of collaborative knowledge construction
62during online discussions (Gweon et al. 2006; Walker et al. 2009). Online discussions could
63be analyzed in real-time and instructional support measures like hints or scaffolds could be
64adapted to the quality of certain aspects of the collaboration. For example, learners who are
65unable to provide warrants and grounds for their claims may get offered scaffolding to
66construct better arguments. Learners who fail to relate their contributions to those of other
67learning partners may be explicitly asked to provide such connections.
68Although various research approaches and corresponding computer-mediated settings
69have been developed to analyze discourse data automatically in the field of CSCL, it has
70proven to be challenging to realize the full potential of the newly introduced technologies.
71Actually, much current adaptive collaborative-learning support (ACLS) research is situated
72in the early stage of development, since the majority of the discourse analyses of collabo-
73rative conversations are currently still conducted “non-automatically” or “semi-automatical-
74ly”. For instance, a non-automatic implementation of adaptive support for collaboration may
75be delivered only in the case when certain non-productive learning behaviors have been
76detected by an experimenter (Gweon et al. 2006). Kumar and colleagues (2007) as well as
77Wang and colleagues (2011) took further steps toward using machine learning to classify
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78student utterances with an acceptable degree of reliability (Cohen’s Kappa of 0.7 or higher).
79However, these efforts have mostly focused on detection of simple patterns that indicate task
80orientation. The purpose of the detection of these patterns was to make sure that students
81stay on the topics that are related to the learning task and providing resources to increase the
82conceptual depth of their discussion.
83While this prior work was based on simple analyses of discussion data, recent advances in
84automating detailed content analyses have been accomplished by applying multi-
85dimensional categorical coding schemes, each dimension of which indicates certain sophis-
86ticated learning processes during collaborative learning (Dönmez et al. 2005; Rosé et al.
872008). These findings demonstrate that CSCL researchers can access various aspects of
88learning processes through automatically extracted diagnostic features from corpus data.
89Other recent work demonstrates that a linguistically motivated automatic analysis of social
90positioning in collaborative discussions can detect authoritativeness of stance of speakers
91relative to their partners with high correlations with human assessment (r00.97) (Mayfield
92and Rosé 2011).
93Nevertheless, further study is needed in order to address some important technical
94obstacles that still hinder the content analysis from being conducted in a fully
95automatic way. First of all, with the exception of approaches that have been applied
96to chat data (Howley et al. 2011; Kumar and Rosé 2011; Kumar et al. 2007), none of
97the analyses mentioned above were capable of dealing with the original ‘raw’ text
98contributed by the participants without segmentation by a human. Specifically, it is
99compulsory to divide raw data into units of analysis (segments). Errors at this stage
100can affect accuracy of coding in the later phases (Strijbos et al. 2006). Therefore the
101existing approaches must be considered to be semi-automatic, due to the requirement
102of manual segmentation. Secondly, developing a model that is capable of assigning a
103set of codes to unit fragments is a lengthy process itself. Finally, and possibly most
104importantly, the models trained in our prior work were highly context specific, and
105therefore demonstrated large performance drops when applied to data from other
106contexts. Therefore, despite the promise of earlier reported results, some crucial
107questions have emerged including the urgent need for the re-use of a coding scheme
108across diverse contexts, or in other words, developing context independent automated coding
109schemas to model similar behavioral patterns during online discussions.
110Against this background, we developed a multi-layer framework, which has been
111optimized for fully automatic segmenting and context-independent coding using the
112previously introduced Natural Language Processing tool called SIDE (Mayfield and
113Rosé 2010a). What we offer is not simply a report on a use case of how to use SIDE
114in CSCL research. Rather we offer insights into what is required to adapt such a tool
115to make it appropriate for applying text classification technology in specific contexts
116within CSCL. In the remainder of the paper, we begin by providing an overview of
117the state-of-the-art in the application of NLP technologies in CSCL research. We offer
118an explanation of an important caveat in the use of automatic classification models in
119CSCL research, namely issues with the generality of trained models. We then present
120our methodological approach, which attempts to address this issue in a novel way.
121The key idea is to extract the semantic and syntactic features of each single word by
122using the techniques of part-of-speech tagging and named-entity recognition before the
123raw data can be segmented and classified on the desired dimensions (e. g., micro-
124argumentation). An evaluation demonstrating the extent to which we have been
125successful in this endeavor is also delivered with empirical evidence. Finally, we
126conclude with discussion of the limitations of our current work and plans for future research.
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127Applying NLP technologies in CSCL

128Natural Language Processing has long been used to automatically analyze textual data. The
129need for involving technology from NLP in the process of content analysis is growing in the
130presence of the Web and distance learning (Duwairi 2006). For instance, the NLP methods
131of content analysis have been developed for the automatic grading of essays (Duwairi 2006;
132Landauer 2003); and for intelligent and cognitive tutoring (Diziol et al. 2010; Rosé and
133Vanlehn 2005).

134History of NLP in support of learning technologies

135In the last few years, researchers have begun to investigate various text classification
136methods to help instructors and administrators to improve computer-supported learning
137environments (Kumar and Rosé 2011; Romero and Ventura 2006). Text classification is
138an application of machine-learning technology to a structured representation of text, which
139has been a major focus of research in the field of NLP during the past decade. Typically, text
140classification is the automatic extraction of interesting, frequently implicit, patterns within
141large data collections (Klosgen and Zytkow 2002). Nowadays, text-classification tools are
142normally designed mainly for power and flexibility instead of simplicity (Romero and
143Ventura 2006), which can assess student’s learning performance, examine learning behavior,
144and provide feedback based on the assessment (Castro et al. 2005). Consequently, most of
145the current text-classification tools are too complex for educators to use, and thus
146their features go well beyond the scope of what an educator might require (Romero
147and Ventura 2006).
148Therefore, TagHelper (Dönmez et al. 2005) and its successor SIDE (Mayfield and Rosé
1492010a) were developed to automate the content analysis of collaborative online discussions.
150As a publically available tool, TagHelper has been downloaded thousands of times in over
15170 countries. Recently, application of TagHelper for automated tutoring and adaptive
152collaboration scripts have been extensively researched (Kumar and Rosé 2011). In order
153to make TagHelper tools accessible to the widest possible user base, default behavior has
154been set up in such a way that users are only required to provide examples of annotated data
155along with un-annotated data. TagHelper first extracts features like line length, unigrams
156(i.e., single words), bigrams (i.e., pairs of words that occur next to each other in the text), and
157part-of-speech bigrams (i.e., pairs of grammatical categories that appear next to one another
158in the text) from the annotated data. An interface for constructing rule-based features is also
159provided. In SIDE, more sophisticated support for extracting meaningful features is includ-
160ed, such as regular expressions, which are important in the area of information extraction and
161named entity recognition, which we make use of in the study reported in this paper. Recent
162work has also yielded approaches for automatic feature construction and support for error
163analysis (Mayfield and Rosé 2010b), which further enhances the ability to construct richer
164and more effective representations of text in preparation for machine learning. Tools such as
165TagHelper and SIDE then build models based on the annotated examples that it can then
166apply to the un-annotated examples. To get the best results, both tools allow users to switch
167easily between different machine learning algorithms provided by Weka (Witten and Frank
1682005), such as Naïve Bayes, SMO, and J48.
169Despite the effectiveness of applying TagHelper to analyze text-based online discussions,
170at least two challenges associated with the current NLP approach still need to be addressed.
171First, the automatic approach has so far only been demonstrated on annotated examples from
172corpora that come from a single scenario, and the generated model is quite context sensitive

J. Mu et al.

JrnlID 11412_ArtID 9147_Proof# 1 - 29/04/2012



EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

173and case dependent, and has not been demonstrated to transfer well to online discussions
174with different topics. Second, the units of analysis (Weinberger and Fischer 2006) to be
175coded on multiple dimensions were identified by human analysts in our prior published
176work. Otherwise, the noise added by errors in the automatic segmentation leads to unsatis-
177factory coding results (Rosé et al. 2008). However, such an automatic segmentation is
178imperative as a precursor to investigating the use of text classification models for triggering
179the timing of real-time adaptive fading in our threaded discussion context. These two crucial
180issues motivated the investigation to explore whether the use of more advanced natural
181language processing technology can offer fully automatic and context-independent automa-
182tion techniques for content analysis.

183Explanation of why generality of trained models is a problem

184While automatic analysis of collaborative learning discussions is a relatively new area,
185analysis of social media such as blogs, discussion fora, and chat data has grown in popularity
186over the past decade and provides important insights to help us understand where issues
187regarding generality of trained models come from. In particular, results on problems such as
188gender classification (Argamon et al. 2003), age classification (Argamon et al. 2007),
189political affiliation classification (Jiang and Argamon 2008), and sentiment analysis (Wiebe
190et al. 2004) demonstrate how difficult stylistic classification tasks can be, and even more so
191when the generality is evaluated by testing models trained in one context on examples from
192another context. Prior work on feature engineering and domain adaptation has attempted to
193address this generalization difficulty. Here we review this extensive work, which demon-
194strates that while small advances towards generalization of trained models have been made,
195it remains an open problem in the field of language technologies, and thus in order to make
196practical progress in the field of CSCL, we must approach the problem in a more applied
197way by utilizing insights from our specific problem context, which we begin to describe in
198the following section.
199One major challenge for training generalizable models is that there is typically a con-
200found between topic distribution and whatever stylistic or structural variable is of interest.
201For example, the large body of work on analysis of gender based stylistic variation offers
202compelling examples that illuminate the reasons why generality of trained models is difficult
203to achieve (Argamon et al. 2003; Corney et al. 2002; Mukherjee and Liu 2010; Schler 2006;
204Schler et al. 2006; Yan and Yan 2006; Zhang et al. 2009). Gender based language variation
205arises from multiple sources. For example, within a single corpus comprised of samples of
206male and female language that the two genders do not speak or write about the same topics.
207Word based features such as unigrams and bigrams are highly likely to pick up on differ-
208ences in topic rather than style (Schler 2006).
209Recent work in the area of domain adaptation (Arnold 2009; Daumé III 2007; Finkel and
210Manning 2009) raises further awareness of the difficulties with the generality of trained
211models and offers insight into the reasons for the difficulty with generalization. One
212important issue is that variation in text feature distributions may be caused by multiple
213factors that are not independent and evenly distributed in the data. These confounding
214factors confuse learning algorithms because the multiple factors that lead to variation in
215the same textual features are difficult to tease apart. What exacerbates these problems in text
216processing approaches is that texts are typically represented with features that are at the
217wrong level of granularity for what is being modeled. Specifically, for practical reasons, the
218most common types of features used in text classification tasks are still unigrams (i.e., single
219words), bigrams (i.e., pairs of words that occur next to each other in the text), and part-of-
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220speech bigrams (i.e., pairs of grammatical categories that appear next to one another in the
221text). Relying on relatively simple features keeps the number of extracted features manage-
222able, which allows for efficient model learning. However, these approaches are prone to
223overfitting due to their simplicity and to the complicating factors mentioned above. This
224leads to large performance drops when a model trained on one domain is applied to another.
225Specifically, when text is represented with features that operate at levels which are too
226fine-grained, features that truly model the target style or structural characteristics of interest
227are not present within the model. Thus, the trained models are not able to capture the style
228itself and instead make their predictions based on features that merely correlate with that
229style within that particular data set. This may lead to models that perform well within
230datasets that contain very similar samples of data, but will not generalize to different
231subpopulations, or even datasets composed of different proportions of the same subpopula-
232tions. Models employing primarily unigrams and bigrams as features are particularly
233problematic in this respect.
234In recent years, a variety of manual and automatic feature engineering techniques have
235been developed in order to construct feature spaces that are adept at capturing interesting
236language variation without overfitting to content based variation, with the hope of leading to
237more generalizable models. PoS ngrams (i.e., sequences of grammatical categories that
238appear together in a text), which have frequently been utilized in genre analysis models
239(Argamon et al. 2003), are a strategic balance between informativity and simplicity. They are
240able to estimate syntactic structure and style without modeling it directly. In an attempt to
241capture syntactic structure more faithfully, there has been experimentation within the area of
242sentiment analysis on using structural features referred to as syntactic dependency features
243(Arora et al. 2009; Joshi and Rosé 2009). However, results have been mixed. In practice, the
244added richness of the features comes at a tremendous cost in terms of dramatic increases in
245feature space size. What has been more successful in practice is templatizing the dependency
246features (i.e., replacing specific words with categories in order to achieve better generaliza-
247tion). Templatizing allows capturing the same amount of structure without creating features
248that are so specific.
249Syntactic dependency based features are able to capture more structure than PoS bigrams,
250however, they are still limited to representing relationships between pairs of words within a
251text. Thus, they still leave much to be desired in terms of representation power. Experimen-
252tation with graph mining from dependency parses has also been used for generating rich
253feature spaces (Arora et al. 2010). However, results with these features have also been
254limited. In practice, the rich features with real predictive power end up being difficult to find
255amidst a large number of useless features that simply add noise to the model. One approach
256in this direction has been a genetic programming technique which builds a strategic set of
257rich features. This approach has proven successful at improving the representational power
258of features above PoS bigrams, with only a modest increase in feature space size. Successful
259experiments with this technique have been conducted in the area of sentiment analysis, with
260terminal symbols including unigrams in one case (Mayfield and Rosé 2010b) and graph
261features extracted from dependency parses in another (Arora et al. 2010). Nevertheless,
262improvements using these strategic sets of evolved features have been very small even where
263statistically significant, and thus it is difficult to justify adding so much machinery for such a
264small improvement.
265Another direction is to construct template based features that combine some aspects of
266PoS ngrams in that they are a flat representation, and the backoff version of dependency
267features, in that the symbols represent sets of words, which may be PoS tags, learned word
268classes, distribution based word classes (such as high frequency words or low frequency
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269words), or words. Such types of features have been used alone or in combination with
270sophisticated feature selection techniques or bootstrapping techniques, and have been
271applied to problems such as detection of sarcasm (Tsur et al. 2010), detection of causal
272connections between events (Girju 2010), or gender (Gianfortoni et al. 2011).

273The Automatic Classification of Online Discussions with Extracted Attributes
274(ACODEA) framework

275Typical text classification for online discussions in CSCL is made to be applied by humans.
276These approaches rely strongly on implicit knowledge held by human coders (e.g., under-
277standing sentences with misspelled words or wrong grammar) to reach an acceptable level of
278reliability. Text classification that should be applied automatically has to account for the
279more limited features that are usually used to train automatic classifiers. Our following
280framework supports the development of such classification schemes.

281Background on classification

282Before delving into the specific processes of how the machine-learning tool operates, we
283further clarify the concepts that are to be classified. Witten and Frank (2005) detail how data
284can be associated with classes or concepts, which should be reproducible by tools for Natural
285Language Processing, intelligible to human analysts, and operational to be applied to actual
286examples. The starting point for understanding online-discussion analysis is to define the
287coding schemas. In choosing the coding schemas, the researcher needs to determine what
288sized segments (which range from single word, sentence, paragraph, to the entire message)
289match with the desired and target activities to be coded (Strijbos et al. 2006). Thus the first
290target concept to learn is to classify, at each word, whether a segment boundary occurs.
291Similar to an earlier segmentation approach (Rosé et al. 2008), the concept of segmentation
292is implemented as a “sliding window” consisting of a specific number of words. In this way,
293any segmentation is possible since the boundary between any neighboring pair of words is a
294possible site for a segment boundary. The second concept considered here is to sort each unit
295of analysis (segment) to one or more categories (dimensions of analysis). For instance, a
296specific sentence, utterance or message is classified according to quality of argumentation or
297social mode of interaction (Weinberger and Fischer 2006).
298Each individual instance (word in the text to be segmented and then coded) provides an
299input to machine learning, which is characterized by a fixed and predefined set of features or
300attributes. Text classification often requires data transforming into appropriate forms (Han
301and Kamber 2006). Attribute construction (or feature construction), where new attributes are
302constructed and added from the given set of attributes, can help provide richer, more
303effective features for representing the text prior to text classification, consequently, ease
304the training of automatic classifiers as well.

305Overview of proposed approach

306In this article we explore several enhancements to this machine-learning technology in order
307to overcome these challenges. For example, one promising direction to consider is the
308integration of information-extraction techniques for improving content analysis. Previous
309work on applying NLP in the field of CSCL, generally accepted raw text as input for
310segmenting and coding, and the features used for classification were very low-level and
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311simplistic. The new approach used in the current study draws from techniques in information
312extraction, which allow the construction of a more sophisticated representation of the text to
313build the classification models on. Such technology includes named-entity recognition,
314which is an active area of research in the field of language technologies (MUC6 1995).
315Part-of-Speech tagging (PoS) is the process of assigning a syntactic class marker to each
316word in a text (Brill 1992; Mora and Peiró 2007), therefore, a PoS tagger can be considered
317as a translator between two languages: the original language that has to be tagged and a
318“machine friendly” language formed by the corresponding syntactic tags, such as noun or
319verb. As Poel et al. (2007) proposed, PoS tagging is often only one step in a text-processing
320application. The tagged text could be used for deeper analysis. Instead of using PoS as the
321default generalized features, it makes sense to apply modified and specialized PoS categories
322and thereby to facilitate automatic segmentation if the unit of analysis is syntactically
323meaningful.
324The goal of Named-Entity Recognition (NER) is to classify all elements of certain
325categories of “proper names” appearing in the raw text, into one of seven categories: person,
326organization, location, date, time, percentage, and monetary amount (MUC6 1995). Core
327aspects of NER are entity and mentions. Mentions are specific instances of entities. For
328example, mentions of the entity class “location” are New Brunswick, Rhodes, and Hong
329Kong. Therefore NER provides not only additional features based on extracted entities for
330each word, but also a more context-independent way to train automatic classifiers. The
331mentions of New Brunswick, Rhodes, Hong Kong are cities in, for example, the discussions
332about three past CSCL conferences, while Bloomington, Utrecht, and Chicago would have
333the same semantic function within discussions about three past ICLS conferences. As an
334initial step of pre-processing in information-extraction applications, an automatic classifier
335that had been trained with predefined entities (e.g. “location”) instead of specific mentions
336(e.g. Hong Kong) might have more flexibility for modeling contextual information, poten-
337tially improving classification performance. More recently, there have been tasks developed
338to deal with different practical problems (IREX and CoNLL-2002), in which every word in a
339document must be classified into one of an extensive set of predefined categories, rather than
340only identifying names of people and locations.
341With the support of current approaches in information extraction, the input to SIDE is
342assumed to be enhanced in a fully automatic way to be less context-dependent. In the
343following section, we will present the multi-layer framework for the development of
344classification schemes for automatic segmentation and coding.
345Figure 1 is a flow-process diagram that illustrates how to apply our framework, the
346Automatic Classification of Online Discussions with Extracted Attributes (ACODEA), to
347achieve a fully automated analysis. Generally, there are three main layers in the proposed
348framework. The labeled rectangles represent the text classifications on the hierarchical
349layers, which are stacked with the pre-processing layer at the top, the segmenting layer at
350the middle and the coding layer at the bottom. The solid lines with arrows show how the
351output at the upper layer is the input for the lower layer. The dotted lines represent the
352information flow in one direction to offer the manually coded materials for training and
353testing the marching learning models. The Kappa values in diamond shapes are used to
354indicate a deciding point in the flow process where a test must be made to check the initial

Q2 Fig. 1 Flowchart to outline the ACODEA framework with (a) hierarchical layers focusing on the converting
procedural from input raw data to the final output coding results (b) parallel processing between human
provider of training material and SIDE; and (c) branching points to decide if the reliability of the training
materials or models are achieving the acceptable level (Kappa value 0.70 or higher)

b
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355agreement of the training materials between human coders, as well as the reliability between
356machine SIDE and training material coded by hand. Oval shaped boxes signify the “ending”
357points of the process, if there is an expected agreement between SIDE and the additionally
358human-coded materials for testing the training models on the lays of segmenting and coding.
359On the first layer of extracting attributes, the part-of-speech tagger and named entity
360recognition system are applied independently. We extract extra features from the text with the
361aim to construct a representation suitable for applying machine learning to, either the segmen-
362tation layer or the coding layer. The basic rules are to apply part-of-speech tagging and named
363entity recognition to extract features that are abstract enough to make interesting patterns
364apparent to machine learning algorithms and yield models that generalize well. On both the
365syntactic and semantic levels, rather than use predefined categories, we design customized sets
366of labels that extract information about the specific tasks or target activities we wish to classify.
367These labels align with behaviors that participants are expected to use during the discourse. In
368this case, each single word in the raw data for training must be pre-processed by human coders
369to extract the syntactic and semantic features. These annotated examples, which reach accept-
370able reliability, can then be used to train classifiers for all defined categories.
371In addition, the entire architecture is structured to cascade from one layer to the next,
372incorporating information from the previous layers to improve the current classifier’s perfor-
373mance. Extracting attributes on the syntactic level benefits from the use of off-the-shelf gram-
374matical part-of-speech taggers, while the layer related to semantic representation benefits from
375the inclusion of named entities and techniques from information extraction. The output from
376these layers is used as the attributes for the final classification layers of segmentation and coding.
377In this paper we propose that the problems introduced above, more specifically, the
378automatic segmenting and context-independent coding can be addressed by extracting
379abstract syntactic and semantic features beyond baseline feature spaces consisting of
380word-level representations such as unigrams and bigrams.
381On the second layer, human coders have to classify the borders between the segments with raw
382data. These human coded examples are used to train the automatic segmentation by machine.
383However, the input to SIDE for generating the segmentation classifier is the set of preprocessed
384concepts from the syntactic attributes, instead of the raw text. By using the new technique of a
385sliding window, the segmentation model can be trained with high reliability (i.e., regarding the
386identification of borders between segments). This segmentation model can then be successfully
387applied to divide all the preprocessed data into the desired unit of analysis automatically.
388Once the data is segmented, human coders have to classify all segments in the training
389data consistent with the dimensions defined for the coding layer. This is required to make
390sure both the human coder and SIDE classify the same segments whose boundary has
391already been identified by SIDE automatically.
392This layered model is motivated by the idea that the initial layers allow the machine
393learning model trained at a higher level to learn more general patterns. However, there is a
394risk inherent in such an approach: Several classifications are made in a row, and thus errors
395on the different layers may be cascaded. Therefore, the final automatic classification must
396ultimately be checked against pure human coding to ensure reliability. We present such an
397evaluation in the following sections.

398Research questions

399In the following, we will present a use case for this multi-layer framework. The main
400question addressed in this study is: how does the multilayer ACODEA framework perform
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401in automatically analyzing discourse data? We divide this question into three sub-questions
402of interest:

403RQ1: Can the first classification layer be automated with satisfactory reliability to extract
404syntactic and semantic attributes?

405We expect that it is possible to achieve an acceptable level of agreement between
406automatically generated codes and human codes when we automate the classification on
407the layer of extracting the desired attributes (H1).

408RQ2: Can the framework be applied towards the second segmentation layer successfully?

409Regarding the layer of segmentation, we make the prediction that (H2a) the reliability
410between SIDE and Human coders is also at an acceptable level. Moreover, (H2b) segment-
411ing based on pre-processed data by extracting the syntactic features is expected to outper-
412form the approach of directly dividing the raw data into units of analysis. In addition one
413more hypothesis (H2c) about the effectiveness of the present approach is that the ACODEA
414framework can be applied to train context independent segmentation with sufficient
415reliability

416RQ3: Can the automatic coding be implemented as the third layer of the multiple-layer
417classification with success?

418419With respect to the final goal of the present framework to fully automate the content
420analysis, we expect that (H3a) the performance of the NLP tool is satisfactory enough to
421achieve acceptable agreement (Kappa value 0.7 or even higher) with the human judgment.
422Compared with the coding process without extracting semantic features, ACODEA frame-
423work is hypothesized (H3b) to be capable of enhancing the reliability of automatic classi-
424fication at the third layer. Furthermore, we expect that the framework can be also used to
425train context-independent classification with sufficient reliability.

426Method

427Participants and learning task

428The composition of the training models for SIDE and the consequent evaluation of the
429innovative application of the NLP tool have lead to the implementation of a computer
430supported collaborative learning study for the discourse data collection. In the year of 2010,
431eighty-four (84) students of Educational Science at the University of Munich participated in
432this study. Students were randomly assigned to groups of three. Each group was randomly
433assigned to one of three experimental conditions. Even though the experimental treatments
434differ in the degree of receiving instructional scaffolding, learning tasks were the same
435across all groups. Learners were required to join a collaborative, argumentative online
436discussion and solve five case-based problems by applying an educational theory. The
437computer-based learning environment used in this experiment is a modified version of the
438one employed by Stegmann et al. (2007). The instructional scaffolding was implemented
439using S-COL (Wecker et al. 2010).
440The chosen theory the students were applying in their discussions within the environment
441was Weiner’s attribution theory (1985) and its application in education. The students
442individually read a lesson on attribution theory and a text introducing argumentation. In
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443the collaborative learning phase, three problem cases from practical contexts were used as a
444basis for the online discussions. The case “Math” describes the attributions of a student with
445respect to his poor performance in mathematics. In the case “Class reunion” a math tutor
446talks about how he tries to help female students deal with success and failure in assignments.
447The case “Between-culture variance” describes differences in school performance between
448Asian and American/European students that were explained by attribution theory. Another
449two cases were used in the pre and post test, which mainly concern the factors that affect a
450student’s choice of a major at the university and student’s explanation for failure in the exam
451of “Text analysis”. In this empirical study the problem-based cases students are facing are
452designed to be varying crossing real-life studying contexts, therefore learners can apply the
453knowledge of attribution theory and argumentation skills to the various contexts (operation-
454alized with the five cases mentioned above).
455The multiple and complex conversations are arranged into threads within the discussion
456environment. Learners have the option either to start a new thread by posting a new message
457or reply to messages that had been posted previously. Replies can be oriented to the main
458topic, or to the reply posted by another member of the learning group, or even to someone's
459reply to a reply. Metadata features such as author, date, and post time are recorded by the
460environment. The learners enter the subject line and the body of the message themselves.
461When students reply to a previous message, the text of that message is also included within
462the body of the message, although that portion of text is marked in a different color to set it
463apart from the new message content.

464Data source and procedure

465We collected 140 conversation transcripts, each of which contained the full interaction from
466one group, and was targeted to a single scenario. Altogether, there are 74,764 words in the
467corpus. Two human coders analyzed almost one fifth of the raw data (equally distributed
468over five cases). About half of the human-coded data were used as the training materials on
469which a few automatic models can be built by SIDE, including the feature extraction,
470segmentation, and coding layers described earlier (Mayfield and Rosé 2010a). The left
471manually coded dataset were further used for material to test the training models. SIDE
472includes an annotation interface allowing for automatic and semi-automatic coding. To train
473such classifiers with SIDE we had to provide examples of annotated data. SIDE extracted
474multiple features from the raw data, like line length, unigrams, bigrams, part-of-speech
475bigrams, etc. Machine learning algorithms use these features to learn how to classify new
476data. As output, SIDE builds a model based on the human annotated data. This model can
477then be easily applied to classify un-annotated data, and then the assigned codes can be
478further reviewed on the annotation interface, which facilitates the process of humans
479correcting errors made by the automatic coding. Furthermore, SIDE employs a consistent
480evaluation methodology referred to as 10-fold cross-validation, where the data for training
481the models can be randomly distributed into 10 piles. Nine piles are combined to train a
482model. One pile is used to test the model. This is done 10 times so that each segment is used
483as a test set once. And then the performance values are averaged to obtain to final
484performance value.

485Statistical tests

486The reliability of the coding was measured using Cohen’s Kappa value and percent agree-
487ment. Both of the indexes have been regarded as accepted standards for measuring coding
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488reliability. Percent agreement is the most simple and most popular reliability coefficient (De
489Wever et al. 2006). Statistically, the inter-rater agreement is determined by dividing the
490number of codes, which is agreed upon by the total number (agree and disagree all inclusive)
491of codes. Supplemental criterion for success is reaching a level of inter-rater reliability with a
492gold standard as measured by Cohen’s Kappa that is 0.7 or higher (Strijbos et al. 2006). Here
493it is worthwhile to further clarify that the present study was undertaken to evaluate different
494types of Kappa in the distinguishable phases, including (1) inter-rater agreement between
495human coders Kappa(Human-Human) to evidence the initial reliability of training examples; (2)
496inter-rater agreement generated by the 10-fold cross-validation (that is, 10 iterations of
497training and testing are performed and within each iteration a different fold of the selected
498data is coded by SIDE for validation while the remaining 9 equally sized folds are used for
499training.) to certify the internal reliability of the SIDE training models, The 10 results from
500comparing the coding between SIDE and manually coded training materials then can be
501averaged to produce a single estimation Kappa(SIDE-Training Material); and finally (3) the
502conclusive Kappa(SIDE-Testing Material) between SIDE and human coders calculated with the
503additional testing materials.

504Application of the framework

505The layer described below is the core part of the architecture for extracting features from the
506text in order to construct a representation for it that is suitable for applying machine learning
507to, either for the coding layer or the segmentation layer.

508(ia) Regarding the syntactic attributes: Each word in the computerized data can be pre-
509processed into multiple and syntactic categories. An example of such a tag is: Term,
510Verb, Property, Conjunction, Comma/Stop Symbol, and so on. These tags are a
511reduced version of the full tag set, making it more suitable for machine learning.
512Some stop words like Pronoun are clustered into the class of Other.
513(ib) Regarding the semantic attributes, each single word in the text can fall into one of the
514multiple categories, either (a) Case, key words from problem space, (b) Theory, key
515words from the concerned conceptual space (actually, attribution theory in the present
516study), or (c) Extraneous theory, from the related educational theory. In addition, there
517are words that are important in reflecting the (d) evaluation either positive or negative
518among partners (which refers to key indicator of Counterargument), (e) Empty
519Message, and even (f) Other activities, can be extracted in this phase. All of the
520categories are chosen because they might support the coding on the classification
521layer. For instance, according to our learning task a claim would typically contain both
522case and theory information, while a ground mainly includes case information and a
523warrant only includes elaborations on attribution theory.
524(ii) The unit of analysis was defined as a sentence or part of a compound sentence that can
525be regarded as ‘syntactically meaningful in structure’ (cf. Strijbos et al. 2006). For
526instance, according to these rules of segmentation, punctuation and the special words
527like ‘and’ are boundaries that can be used to segment compound sentences if the parts
528before and after the boundary are ‘syntactically meaningful’ segments. This size of
529segment has been proved to be reliable (Strijbos et al. 2006), and suitable for the
530coding dimension conducted in the current study. An entire process of extracting
531attributes, segmenting and coding of the selected example of argumentative discussion
532is illustrated in the Fig. 2.
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533(iii) Our coding layer was defined with respect to the approach of argumentative knowledge
534construction. Learners construct arguments in interaction with their learning partners in
535order to acquire knowledge about argumentation as well as knowledge of the content
536under consideration (Andriessen et al. 2003). Therefore on this layer we are mainly
537concerned with the following categories, based on themicro-argumentation dimension of
538the multidimensional framework developed by Weinberger and Fischer (2006):

539(a) Claim is a statement that advances the position learners take to analyze a case with
540attribution theory.
541(b) Ground is the evidence from a case to support a claim.
542(c) Warrant is the logical connection between the grounds and claims that present the
543theoretical reason why a claim is valid. Consequently,
544(d) Inadequate Claim should be differentiated in the coding, which concerns other
545related educational theory to explain a case.
546(e) Evaluation is an expression of agreement or disagreement with a learning partner.
547There are more technical dimensions to indicate the

Fig. 2 Application of the ACODEA framework (example)
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548(f) Prompts, which are the computer-generated prompts to structure the argumentative
549discourse, and
550(g) Other, which cannot be sorted by any other dimensions, and finally
551(h) Empty Message is the computer-generated message to report that the segment has
552no content.

553Results

554Two coders created the training material for SIDE. The inter-rater agreement between two
555human coders was Cohen’s Kappa(Human-Human)00.93 on the syntactic-attributes layer and
556Cohen’s Kappa(Human-Human)00.97 on the semantic-attributes layer. In addition, the human
557coders achieved a high value of Cohen’s Kappa(Human-Human)00.96 for the segmentation
558layer and Cohen’s Kappa(Human-Human)00.71 for the coding layer. These results indicate
559acceptable human baseline performances for SIDE to be trained to analyze the un-annotated
560data regarding the extracted attributes, segmentation and coding layers.

561RQ1: Can the first classification layer be automated with satisfactory reliability to extract
562syntactic and semantic attributes?

563SIDE achieved an overall Cohen’s Kappa(SIDE-Training Material)00.94 (Percent Agreement0
56491.7 %) with the training material on the syntactic layer, and an overall of Cohen’s Kappa(SIDE-
565Training Material)00.93 (Percent Agreement091.0 %) on the semantic layer. An independent
566human coder (who created the testing material) and SIDE achieved an agreement of Cohen’s
567Kappa(SIDE-Testing Material)00.92 (Percent Agreement093.4 %) on the syntactic layer, and
568Cohen’s Kappa(SIDE-Testing Material)00.84 (Percent Agreement093.5 %) on the semantic layer.
569As shown in Table 1, the reliability of SIDE to analyze text on the syntactic and semantic
570layers is satisfactory across all five cases. Because the precision on the layer of extracting
571attributes greatly influences the performance of the steps further in the chain of linguistic
572treatments, the inter-rater reliability and agreement of the PoS tagger and named entity
573recognition is especially important.

574RQ2: Can the framework be applied towards the second segmentation layer successfully?

575Internal Cohen’s Kappa(SIDE-Training Material)00.98 (Percent Agreement099.6 %) was
576achieved by SIDE when it attempted to automatically segment the text . An overall model
577of segmenting was produced by the training material which is distributed evenly among the
5785 cases, and has been pre-processed to extract syntactic attributes. A human coder and SIDE

t1:1Q3 Table 1 Reliability of automatic attribute extraction within the 5 Cases (SIDE vs. testing material)

t1:2 Case Syntactic-attributes layer I Semantic-attributes layer I

t1:3 Cohen’s kappa Percent agreement Cohen’s kappa Percent agreement

t1:4 Overall cases 0.94 91.7 % 0.93 91.0 %

t1:5 Major choice 0.90 92.2 % 0.95 98.1 %

t1:6 Math 0.85 88.1 % 0.92 96.9 %

t1:7 Class reunion 0.91 92.9 % 0.90 96.0 %

t1:8 Between-culture variance 0.93 94.4 % 0.96 98.3 %

t1:9 Text analysis 0.88 90.3 % 0.94 97.7 %
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579achieved an agreement of Cohen’s Kappa(SIDE-Testing Material)00.97 (Percent Agreement0
58099.3 %). The inter-rater reliability of operating the overall model to the five different cases is
581displayed in the Table 2. The algorithm for segmenting generated on the base of the layer of
582extracting attributes achieved sufficiently higher Cohen’s Kappa across the tested cases
583compared with the approach without extracting attributes.
584In addition, to further prove the segmentation is context-independent, five distinct
585segmentation models based each on a single case have been verified by using two kinds
586of testing material, which is either consistent with trained models (e.g. testing the Math
587model with the text discussing on the case Math) or not (e.g. testing the Math model with the
588text of the other four cases). Only slight differences were found when the testing material
589was inconsistent with the training material (as shown in Table 3).

590RQ3: Can the automatic coding be implemented as the third layer of the multiple classi-
591fication with success?

592SIDE achieved an internal Cohen’s Kappa(SIDE-Training Material)00.77 (Percent Agreement0
59381.3 %) using the extracted semantic attributes across all cases during training. The reliability
594across all cases comparing SIDE with a human coder (based on raw text) was sufficiently high
595(Cohen’s Kappa(SIDE-Testing Material)00.81; Percent Agreement084.5 %). As shown in Table 2,
596sufficient inter-rater agreement values were achieved for applying the overall model to all of
597the cases. It is also obvious that extracting semantic attributes substantially increases the
598agreement between human coders and SIDE. For example, the classification without extracting
599semantic attributes resulted in less acceptable kappa values of 0.47 for the case of Class
600reunion data and a kappa value of 0.53 for the case of Between-culture variance.
601In order to provide additional statistical evidence for the assumed context-independent
602coding, five training models have been generated. The results of comparing the reliability of

t2:1 Table 2 Comparison without and with the layer of extracting attributes to automate the content analysis
(SIDE vs. testing material)

t2:2 Without extracting attributes With extracting attributes

t2:3 Segmentation
layer II

Cohen’s Kappa Percent Agreement Cohen’s Kappa Percent Agreement

t2:4 Kappa SIDE-Training Material 0.84 96.7 % 0.98 99.6 %

t2:5 Kappa SIDE-Testing Material 0.86 97.0 % 0.97 99.3 %

t2:6 Major choice 0.80 96.7 % 0.95 99.1 %

t2:7 Math 0.86 96.6 % 0.96 98.9 %

t2:8 Class reunion 0.87 97.0 % 0.97 99.3 %

t2:9 Between-culture variance 0.90 97.7 % 0.99 99.7 %

t2:10 Text-analysis 0.83 96.9 % 0.98 99.6 %

t2:11 Coding layer III Cohen’s Kappa Percent Agreement Cohen’s Kappa Percent Agreement

t2:12 Kappa SIDE-Training Material 0.70 75.6 % 0.77 81.3 %

t2:13 Kappa SIDE- Testing Material 0.61 67.8 % 0.81 84.5 %

t2:14 Major choice 0.63 71.2 % 0.77 82.9 %

t2:15 Math 0.67 72.3 % 0.78 82.6 %

t2:16 Class reunion 0.47 58.5 % 0.76 81.0 %

t2:17 Between-culture variance 0.53 63.1 % 0.85 87.5 %

t2:18 Text-analysis 0.68 75.0 % 0.87 89.2 %
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603the models to code the selected texts which are either consistent with the training material or
604not, are further displayed in Table 3. It is important to note that we only observe a slight
605fluctuation of the reliability results when we test on different cases than we trained on.
606Nevertheless, the level of performance we achieved with the multi-layer approach is still
607acceptable (above or close to the cut-off value of 0.70). In certain contexts (namely the class
608reunion and text analysis contexts) the coding model indeed performed better with the
609inconsistent testing cases. The relative stability in the Cohen`s Kappa as well as Percent
610Agreement indicates the improved approach of automatic coding is adequate with respect to
611context-independence.

612Discussion

613This paper proposes a systematic framework called ACODEA (Automatic Classification of
614Online Discussions with Extracted Attributes), which has been applied successfully for the
615design, implementation and evaluation of a methodology for automatic classification of a large
616German text corpus. Due to the extracted syntactic and semantic features, ACODEA allows a
617bottom-up specification of the in-depth information contained within the discourse corpus and it
618is therefore more precise and reliable than the traditional approach without extracting features
619during a pre-processing phase before content analysis. More importantly, it provides insights to
620identify the unit fragments automatically, when the inputs for segmentation consist of
621computer-friendly syntactic symbols. Also, the acceptable reliability of automatic segmentation
622and coding across various contexts in the current study offers hope that the resulting classifi-
623cation models can be quickly adapted for a new knowledge domain by adding a simple
624specification of the semantic/syntactic attributes at the pre-processing layer.
625As compared to previous work, the ACODEA framework introduced here has made
626substantial headway towards addressing the most challenging methodological problems with
627respect to full automation and context independence. Besides the above-mentioned contri-
628butions to automated discourse analysis, we also show significant progress in bridging the
629gap between the approved methodological improvements on the one hand and the inade-
630quate practical application on the other hand. Automating detailed content analyses is not a

t3:1 Table 3 Consistent vs. inconsistent models (training/testing) to automate the content analysis

t3:2 Training/testing models Consistent Inconsistent

t3:3 Segmentation layer II Cohen’s Kappa Percent Agreement Cohen’s Kappa Percent Agreement

t3:4 Major choice 0.97 99.2 % 0.95 98.8 %

t3:5 Math 0.96 98.9 % 0.96 99.2 %

t3:6 Class reunion 0.94 99.0 % 0.97 99.3 %

t3:7 Between-culture variance 0.98 99.5 % 0.97 99.2 %

t3:8 Text-analysis 0.95 98.8 % 0.95 98.9 %

t3:9 Coding layer III Cohen’s Kappa Percent Agreement Cohen’s Kappa Percent Agreement

t3:10 Major choice 0.72 80.3 % 0.66 72.0 %

t3:11 Math 0.73 78.3 % 0.65 72.0 %

t3:12 Class reunion 0.59 81.9 % 0.74 76.9 %

t3:13 Between-culture variance 0.74 78.4 % 0.59 67.3 %

t3:14 Text-analysis 0.62 69.9 % 0.74 78.5 %
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631novelty in CSCL research, which has been conducted for many intentions (Walker et al.
6322009). At present, however, the number of studies demonstrating the explicit specifics of an
633analysis method is limited. In this respect it would be challenging — for the novices who
634lack extensive computational linguistics knowledge — to implement the existing analysis
635framework in novel situations. This paper can also serve as an example of the process that is
636required to use such technology in a CSCL context in order to serve as a model that other
637researchers can follow in their own work.
638A focus on transfer of learning from one context to another, which has witnessed a great
639increase in attention in recent years in the field of CSCL, is defined as the expectation that
640the knowledge/skill previously acquired in carrying out a cognitively complex learning task
641can be applied in a context different from the learning context. As elaborated in the current
642study, our goal was to perform analysis of discourses that not only occurred during the
643collaborative-learning phase of our study, but also that took place before and after the
644intervention in the transfer cases. From this point of view, one of the most important issues
645raised in our work is the ability of the improved NLP tool to transfer what it learned from
646previous domains to new contexts. The contribution of this study is also more efficient than
647previous work in adaptation across widely disparate domains, e.g., from newswire to
648biomedical documents (Daumé III 2007). We demonstrate that models trained in one context
649can be effectively be applied to other target contexts which share some likeness to the
650original resource context.
651Nevertheless, it must be acknowledged that the work presented in this paper is somewhat
652tailored to the specific analysis associated with the multi-dimensional coding scheme
653developed in our earlier work. As mentioned above, domain adaptation of text-
654classification models in the general case is still an open research problem. In other words,
655the developed approach is merely context-free for analyzing a specific discussion activity,
656which is assumed to be valuable for learning (e.g., micro-argumentation in this case). The
657preprocessing steps of PoS tagging and named-entity extraction make strong assumptions
658about what characteristics of the texts vary from context to context in terms of the five cases
659investigated in the current study. Hence, the specific coding schemas can only be applied in
660particular contexts, in which the underlying mechanism of the concerned learning activities
661is particularly similar and specialized (e.g., epistemic activities embedded in the argumen-
662tative knowledge construction). Depending on the domain as well as the type of target
663learning process, different sets of categories for the layer of extracting semantic attributes
664may be used, for instance, aiming at the maximum performance of problem solving or
665thought–provoking questioning.
666Considerable efforts in terms of time and other research efforts have been spent on
667exploring the application of the state-of-the-art text-classification technology to enable
668content analysis in a fully automatic and reliable way. The present ACODEA framework
669is critical not only to help researchers to speed up their projects through removing time-
670consuming tasks, such as segmenting and coding; it may also essentially change the way we
671design learning environments and scaffold the desired collaborative learning. Specifically,
672automatic analysis of online discussion could provide instructors with the capability to
673monitor the learning progress occurring in real-time, to indicate what specific and person-
674alized need should be addressed. In this way, a fully automatic system could enable adaptive
675intervention for collaborative learning, which is assumed to be more efficient in promoting
676higher order thinking or collaborative behavior, than the static, one-size-fits-all interventions
677(Gweon et al. 2006; Kumar et al. 2007).
678In addition, one interesting issue should still be further investigated to enrich our coding
679schemas involving argumentative knowledge construction. Specifically, it would be useful
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680to be able to assess how “strong” the argumentation is, rather than only how structurally
681complete the argumentation is, as we have done so far. From an epistemic perspective, an
682appropriate argument is more than a simple pile-up of information from problem and
683conceptual space, which includes a structurally appropriate connective between specific
684case and concerned theory. One possibility is that in the pre-processing step, the keywords
685from case and theory, which are correctly connected corresponding to an expert model, can
686be weighed automatically. This way, scaffolds provided by an adaptive collaboration script
687assisted by the automated and customized approach of qualitative content analysis can be
688much more powerful in its facilitation role, supporting valuable learning processes.
689To sum up, it is obvious that the development of ACODEA is a process of breaching
690scientific boundaries of multiple research domains ranging from education, psychology and
691computer science to linguistics. Our results can be seen as evidence of progress through
692interdisciplinary research in the field of CSCL. Empirical evidence in the present study further
693suggests that the multi-layer content-analysis approach elaborated upon here, along with the
694outlined steps to be customized for different contexts and alterative coding dimensions of
695interest, will further stimulate additional and interesting research in the field of CSCL.

696
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