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10Abstract Adaptive collaborative learning support systems analyze student collaboration as
11it occurs and provide targeted assistance to the collaborators. Too little is known about how
12to design adaptive support to have a positive effect on interaction and learning. We
13investigated this problem in a reciprocal peer tutoring scenario, where two students take
14turns tutoring each other, so that both may benefit from giving help. We used a social
15design process to generate three principles for adaptive collaboration assistance. Following
16these principles, we designed adaptive assistance for improving peer tutor help-giving, and
17deployed it in a classroom, comparing it to traditional fixed support. We found that the
18assistance improved the conceptual content of help and the use of interface features. We
19qualitatively examined how each design principle contributed to the effect, finding that peer
20tutors responded best to assistance that made them feel accountable for help they gave.

21Keywords Adaptive collaborative learning support . Adaptive scripting . Reciprocal peer
22tutoring . Intelligent tutoring . In vivo experimentation
23

24Through participation in collaborative activities students socially construct knowledge
25(Schoenfeld 1992). They can elaborate on their existing knowledge and build new
26knowledge when they articulate their reasoning (Ploetzner et al. 1999), integrate other
27group members’ reasoning (Stahl 2000), reflect on misconceptions, and work toward a
28shared understanding (Van den Bossche et al. 2006). However, for collaboration to be
29effective at engaging these processes, students need to display positive collaborative
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30behaviors (Johnson and Johnson 1990), and they generally do not do so without assistance
31(Lou et al. 2001).
32Small-group collaboration can be supported in several ways: through the use of human
33facilitation to guide the interaction (Hmelo-Silver 2004; Michaels et al. 2008), pre-
34collaboration training (Prichard et al. 2006; Saab et al. 2007), or scripting of the
35collaborative interaction by giving students designated roles and activities to follow
36(Fischer et al. 2007; Kollar et al. 2006). While human facilitation can indeed be effective, it
37is resource intensive, as it requires an expert facilitator to guide each group’s discussion.
38Training and scripting are less resource intensive, but students may not be capable of or
39motivated to follow the instructions given (Ritter et al. 2002). In a face-to-face
40collaboration context, there is no way for these techniques to ensure that they do so. An
41increase in the presence of computer-mediated collaborative activities in the classroom has
42changed the way collaboration can be structured, as script elements can be embedded in the
43interface: Roles can manifest themselves through the types of collaborative actions students
44can perform using the system, phases can be strictly enforced, and prompts can take the
45form of sentence classifiers or starters, where students complete open-ended sentences such
46as “I agree, because…” However, this increase in support comes with a potential
47decrease in motivation, as this level of support can overstructure collaboration for
48students who already know how to collaborate (Kollar et al. 2005). Further, students
49often fail to comply with script elements such as sentence starters (Lazonder et al. 2003),
50perhaps because they do not know how to use them effectively or are not motivated to do
51so. For example, if students repeatedly use sentence classifiers to type something off-
52topic, such as “I agree because… I’m getting hungry,” this is unlikely to contribute to a
53beneficial interaction.
54A promising new method for facilitating computer-supported collaborative activities in
55the classroom is by providing students with adaptive collaborative learning support
56(ACLS). In theory, this approach should be more effective than fixed support alone, as
57students would always receive a level of assistance appropriate to their collaborative skill,
58and the intelligent system could verify that students are, in fact, improving their
59collaboration (Rummel and Weinberger 2008). Studies comparing automated adaptive
60support to fixed support have indeed been promising (Baghaei et al. 2007, Kumar et al.
612007), but research into ACLS is still at an early stage. In designing ACLS people have
62mainly adapted individual learning paradigms, such as providing explicit feedback directly
63to the unproductive collaborator (see Soller et al. 2005, for a review). For example, the
64system COLLECT-UML responds to a lack of elaboration by saying: “You seem to just
65agree and/or disagree with other members. You may wish to challenge others’ ideas and ask
66for explanation and justification” (Baghaei et al. 2007). This form of feedback has been
67demonstrated to be successful in individual learning (e.g., Q1Koedinger et al. 1997), as
68students can immediately reflect on how the feedback applies to their current activity and
69make appropriate changes to their behavior. However, it may be less appropriate for
70collaboration, and, in fact, Kumar et al. (2007) found that students tended to ignore
71adaptive prompts while collaborating. Students may ignore adaptive feedback because it
72violates Gricean maxims of the conversation (e.g., appears irrelevant to the task; Bernsen et
73al. 1997) or disrupts the perceived safety of the collaborative context (Nicol and
74Macfarlane-Dick 2006; Van den Bossche et al. 2006). Two recent studies have
75demonstrated that socially sensitive features of adaptive support are indeed important for
76getting positive outcomes from the support (Chaudhuri et al. 2009; Q2Kumar et al. 2010).
77Given the complex set of options and interactions involved in collaboration support, any
78null effects found in comparing adaptive to fixed support might be due to limitations in the
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79support design, and not because adaptive support is ineffective per se. It is therefore
80important to explore the full design space of support possibilities.
81This project focuses on how to design adaptive support to improve the quality of
82collaborative student interaction. We investigate this broader question in the context of a
83system that we have developed for supporting help-giving behaviors in a reciprocal peer
84tutoring scenario for algebra. Our overall program of research has leveraged a paradigm
85evolved from the in vivo experiments described by Koedinger et al. (2009). In vivo
86experiments lie at the intersection of psychological experimentation and design-based
87research, as defined by Collins (1999) and later expanded upon by Barab and Squire
88(2004). Like psychological experimentation, an in vivo experiment involves the
89manipulation of a single independent variable and the use of fixed procedures to test a
90set of hypotheses. In addition, like design-based research, an in vivo experiment takes place
91in real-world contexts that involve social interaction, and characterizes the relationships
92between multiple process variables and outcome variables.
93We would argue that for in vivo experimentation to be successful it can be helpful to
94incorporate further elements of design-based research outside those used in a single in vivo
95experiment: the use of participant co-design and analysis to develop a profile of what is
96occurring and inform flexible, iterative design revisions ( Q3Beyer and Holtzblatt 1997).
97Iterated in vivo experimentation, where we use a design-based research process to create an
98intervention, deploy the intervention using an in vivo experiment, and then interpret the
99effects through a design-based lens, may be a more effective way of theory building than
100executing an in vivo experiment in isolation. This concept of iterated in vivo
101experimentation is similar to that of action research (Brydon-Milier et al. 2003), with a
102few key differences. Under iterated in vivo experimentation, theory-building is a driving
103force in the research agenda, in addition to effecting social change, and the use of both
104quantitative and qualitative methods are advocated.
105In this paper, we discuss our four phase program of iterated in vivo experimentation for
106adaptively supporting the quality of peer tutor help-giving. First, we used a human-
107computer interaction design method called Speed Dating (Davidoff et al. 2007), which led
108to the identification of three design principles for adaptive collaboration assistance in this
109context (Phase 1: Needs Identification). Based on these principles, we augmented an
110existing peer tutoring system with adaptive support, including reflective prompts triggered
111by elements of the help that they have given (Phase 2: Assistance Design). We deployed
112the system in an in vivo experiment, and quantitatively analyzed its effects, comparing
113the adaptive assistance to parallel fixed assistance for effects on student help-giving
114(Phase 3: In Vivo Experiment). We then returned to a design-based methodology to
115qualitatively examine how our three design principles more directly influenced the
116student interactions (Phase 4: Contrasting Cases). We conclude this paper by discussing
117the theoretical and design implications of our results, placing our system in the context of
118other ACLS systems.

119Reciprocal peer tutoring

120We explore how to design adaptive support to improve help-giving behaviors among peers.
121Help-giving is an important part of many collaborative activities, and is a key element of
122the productive interactions identified by Johnson and Johnson (1990) that contribute to
123learning from collaboration. In giving help, even novice students benefit; they reflect on
124their peer’s error and then construct a relevant explanation, elaborating on their existing
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125knowledge and generating new knowledge (Roscoe and Chi 2007). Thus, improving help-
126giving is likely to benefit the help giver. Further, supporting help-giving might have indirect
127benefits for the help receiver, as students tend to benefit most from receiving help that:
128arrives when they reach an impasse, allows them to self-explain, and, if necessary, provides
129an explanation that is conceptual and targets their misconceptions (VanLehn et al. 2003;
130Webb 1989; Webb and Mastergeorge 2003).
131Unfortunately, most students do not exhibit positive helping behaviors spontaneously
132(Roscoe and Chi 2007). Thus, during collaboration students may fail to help each other well
133or even at all. Specifically, students are often more inclined to give each other instrumental
134help (e.g., “subtract x”). They rarely provide conceptual, elaborated help that explains why,
135in addition to what, and references domain concepts (e.g., “subtract x to move it to the other
136side”). This tendency decreases the likelihood that either student engages in elaborative
137knowledge-construction processes and benefits from the interaction (Webb 1989) Q4.
138Promoting the conceptual content of student help has benefits for the interaction as a
139whole (Fuchs et al. 1997), and is the major focus of our peer tutoring support.
140One technique for facilitating student help-giving is by means of employing a reciprocal
141schema, where first one student is given artificial expertise in a particular domain and is
142told to regulate the problem solving of a second student, and then the roles are reversed and
143the second student becomes the expert ( Q5Dillenbourg and Jermann 2007). As part of their
144role, the expert must monitor their partner’s problem solving and offer appropriate help
145when it is needed. Examples of this class of collaborative activities are dyadic activities
146such as reciprocal teaching by Palincsar and Brown (1984), mutual peer tutoring by King et
147al. (1998), and reciprocal peer tutoring by Fantuzzo et al. (1989). Several of these activities
148have been successful at increasing student learning in classroom environments compared to
149individual and unstructured controls (Fantuzzo et al. 1989; King et al. 1998; Fuchs et al.
1501997). They have been effective for both low and high ability students, but only when
151further support is provided to students in order to assist them in helping each other
152effectively. For example, Fuchs et al. 1997 trained students to deliver conceptual
153elaborated mathematical explanations, and showed that their mathematical learning was
154significantly better than elaborated help training alone (without specific emphasis on
155conceptual content).
156To explore the potential of adaptive support for help-giving, we have developed a
157reciprocal peer tutoring environment as an addition to the Cognitive Tutor Algebra (CTA), a
158successful intelligent tutoring system for individual learning in high-school Algebra
159( Q6Koedinger et al. 1997). We designed the environment to be used in a scenario where first
160students prepare to tutor each other on different problems, and then are seated at different
161computers in the same classroom and alternate being tutors and tutees. The environment
162encourages students to collaborate in a shared workspace, and talk to each other using a
163chat window. In this way, it has much in common with the successful Virtual Math Teams
164project, where groups of students get together to discuss mathematics using a shared
165workspace and unstructured chat (Stahl 2009). Our system also draws from other adaptive
166systems that support peer help, such as IHelp, where computer agents use peer learner and
167helper profiles to negotiate tutoring partnerships between students (Vassileva et al. 2003).
168However, unlike IHelp, our system supports peer tutors as they tutor, attempting to improve
169the conceptual, elaborated help they provide. Thus, the environment also borrows from
170single-user systems that have students tutor a virtual peer, some of which include an
171adaptive agent that helps the student be a better tutor (e.g., Q7Leelawong and Biswas 2008).
172Our research stands out in its extended development of synchronous automated adaptive
173support of complex human-human interaction, in the context of peer tutoring. In the next
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174section, we discuss Phase 1 of our iterated in vivo experimentation program: our
175exploration of potential designs for adaptive interaction support for peer tutoring.

176Phase 1: Needs identification Q8

177The first phase of our work centered on an exploration of potential designs for adaptive
178interaction support for peer tutoring. We generated several different ideas for adaptive
179support, and then used the Speed Dating method (Davidoff et al. 2007) to gather student
180reactions. From this process we derived three principles of ACLS design.

181Ideation

182Drawing inspiration from existing forms of support for individual and collaborative
183learning, we generated several ideas for adaptively supporting reciprocal peer tutoring that
184went beyond the individual learning model of presenting explicit feedback to the
185collaborator who needs support.

186Reflective prompts One idea for delivering adaptive support to collaborators is to mimic the
187support that human facilitators provide in face-to-face groups. In accountable talk as
188described by Michaels et al. (2008), a teacher directs a classroom using several different
189reflective “moves”, such as asking a student to expand on an utterance (“Why do you think
190that?”). Instead of presenting a single student with very explicit feedback, it may be
191beneficial to present all students involved in the interaction with questions that prompt
192further reflection and reasoning. While other adaptive systems have presented feedback
193publicly to both users (e.g., Constantino-Gonzalez et al. 2003), it is rare for adaptive
194systems to pose open-ended reflective prompts. While it is true that there are valid technical
195reasons for this design decision, the ability of systems to analyze open-ended responses is
196increasing (McNamara et al. 2007), and looking to the future, it is important to explore the
197potential of these prompts. Further, posing these prompts at appropriate times may be
198beneficial for triggering cognitive processes (Chi et al. 1994), even if the system does not
199follow up on student responses.

200Peer-mediated feedback Some effective fixed collaborative learning scripts attempt to get
201individual students to elicit certain responses from their partners; for example, by having
202students ask their partner a series of questions at increasing levels of depth (e.g., King et al.
2031998). In our second idea, peer-mediated feedback, the system provides interaction
204guidance to the partner of the student whose behavior we would like to change. For
205example, if one student is not self-explaining their problem-solving steps, we can prompt
206their partner: “Did you understand what your partner did? If not, ask them why.” Students
207who receive the feedback are thus encouraged to self-regulate their learning, prompting
208them to request the help they need from their partner. For the students whose behavior we
209would like to change, receiving a prompt from a partner might feel more natural and
210comprehensible than receiving computer feedback.

211Adaptive resources Adaptive resources, instead of explicitly telling students how to
212improve their behavior, provide students with resources to help them to make the necessary
213changes. This approach is drawn from adaptive hypermedia, where the information that is
214available to students changes in accordance with their knowledge (Brusilovsky 2001). In a
215fixed support approach developed by Fuchs et al. (1997), students were trained in
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216delivering conceptual mathematical explanations, using an alternating program of video
217clips and classroom discussion. In an adaptive system, a video related to each
218collaboration skill could be presented when a student may be thinking of applying the
219skill (for example, while preparing explanations for a given problem), and additional
220materials surrounding the video could incorporate specific information about the current
221problem or collaborating students. While this specific approach has rarely been used in
222ACLS systems, visualization systems have been developed that mirror back to students’
223aspects of their collaborative performance (Soller et al. 2005). Augmenting these
224systems to present more information to students about reaching ideal performance might
225be a fruitful area of research. 226

227Speed dating process

228Our next step was to use these assistance concepts as a basis for exploring user
229perceptions relating to adaptive support. We applied a design method called Speed
230Dating (Davidoff et al. 2007), which takes a sketch-based approach to give the designer
231insight into user needs. The aspect of Speed Dating we leveraged involves the use of
232focus groups to discuss several potential design scenarios in rapid succession. We
233sketched 12 scenarios for adaptively supporting a reciprocal peer tutoring activity, based
234both on the ideas described above and on traditional ACLS. The support sketches varied
235according to the collaborative situation that triggered the support, with four sketches
236designed to support peer tutors unsure how to give help, four sketches designed to
237prevent peer tutors from giving over-enthusiastic help, and four sketches designed to
238prevent peer tutors from giving simplistic instructions. Each scenario leveraged
239particular aspects of the ideas described in the previous section. Fig. 1 shows a sample
240scenario that we presented to students representing peer-mediated feedback: In response
241to the peer tutor giving unasked-for help, the tutee is told to ask his partner to let him try
242the step before helping. We then assembled three groups of volunteer high school
243students with four students per group. Groups were pulled out of class and interviewed at
244the school. We presented the 12 support sketches to students, and asked for their
245reactions to each idea.

Fig. 1 Speed Dating scenario.
In this scenario, the tutee is
encouraged to self-regulate their
own learning by asking the peer
tutor to refrain from helping until
the tutee has tried the step.
Students were presented with 12
scenarios in rapid succession and
asked discussion questionsQ9
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246Accountability and efficacy design principles

247Two motivational influences reappeared in student discussions: feelings of accountability
248for tutee learning, and a desire for tutoring efficacy. Students appeared to take their
249potential role as peer tutors very seriously, saying when considering a tutoring error:
250“Maybe he’s going to be messed up—I wouldn’t want that to happen” (Group 1). They
251wanted to feel like good tutors and be perceived as good tutors, responding very positively
252to a scenario where the computer offered public praise in the chat window: “I really like the
253one where the computer joins in on the IM… You gave that person good advice, both
254students see it” (Group 1). Based on this analysis, students who do not feel like capable
255tutors may disengage with the activity or simply give their partners the answer in order to
256increase their feelings of efficacy.
257There are two main implications of these motivational factors with respect to designing
258assistance provided to peer tutors: First, assistance could be designed to leverage the
259feelings of accountability already present in tutoring interactions in order to encourage peer
260tutors to give help in effective ways (Accountability Design Principle). For example,
261presenting interaction feedback and praise publicly in the chat window where both students
262can see it might encourage peer tutors to apply the advice. Second, it is necessary for
263assistance in general, and in particular for assistance designed to increase accountability, to
264avoid threatening peer tutors’ beliefs that they are capable tutors, but instead to increase
265their sense of control over the situation (Efficacy Design Principle). Any assistance given
266by the computer should avoid undermining the peer tutor’s control over the interaction, and
267for this reason, students overwhelmingly rejected the idea of commentary on peer tutor
268actions being given to the tutee, saying that this was “like your teacher talking over your
269shoulder” (Group 2). Instead, students preferred assistance that put computers and peer
270tutors on more equal footing, such as reflective prompts delivered by computers in the chat
271window (“the computer’s asking—I kind of like that… I think the computer should just go
272ahead and do it in the chat window”—Group 3). By positioning computers and peer tutors
273as collaborators (see Chan and Chou 1997, for examples of this strategy in individual
274learning), we may be able to preserve tutoring efficacy, increasing peer tutor motivation to
275give good help.

276Relevance design principle

277When exploring student perceptions of different support designs, we also found that
278students particularly focused on how relevant the help appeared to be to their task, and how
279little it disrupted their interaction. On a broad level, it was clear that students wanted to get
280system feedback that they could use (“If it [the computer] says something we needed to
281know then it would be ok”—Group 2). By and large, students cited cognitive help on how
282to solve the problems as useful feedback, but surprisingly, what they wanted to receive was
283not simply a hint targeted at the next problem step. Students said that the adaptive hints
284were not always very informative (“the hint—doesn’t really tell you much”—Group 2), and
285admitted that therefore they would be likely to take advantage of the hints facility (“You
286could just be clicking the hint button, to like, get the answers”—Group 3). Instead, students
287stated that they preferred hints that gave both the high-level concepts relevant to each
288problem step, and specific illustrations of the concepts. One student even suggested support
289that “give[s] you an example problem, but explains the steps to you and explains how they
290get the answer” (Group 3). Despite all this discussion about the usefulness of cognitive
291feedback, there was nearly no talk about the usefulness of interaction feedback, suggesting
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292that students perceived interaction feedback as less relevant than cognitive feedback. As
293we consider interaction feedback highly relevant to student learning, this finding may
294be problematic.
295This analysis leads us to recognize the importance of designing adaptive support so that
296it appears relevant to students (Relevance Design Principle) in order to motivate them to
297incorporate the assistance into their own interactions. As students believe that cognitive
298support is relevant but do not recognize the relevance of interaction support, it might be that
299any interaction feedback given to students should be linked to cognitive feedback, to make
300the interaction feedback more concrete and immediately applicable. Telling students: “You
301should explain why to do a step in addition to what to do. For example, on the next step
302your tutee should be trying to isolate the y” might make the help seem more relevant than
303simply just telling them “You should explain why to do a step in addition to what to do.”
304Another technique for making the collaboration support more relevant to student interaction
305is by clearly linking the support to what peer tutors themselves want to do. For example,
306help on how to give an explanation would be perceived as maximally relevant when
307students are actively trying to give their partner an explanation.

308Discussion

309By generating diverse ideas for support, and then using a needs-validation method called
310Speed Dating, we generated three design principles for supporting students in collaborating
311with each other: accountability, efficacy, and relevance. At first glance, these principles may
312not appear surprising: Effects of accountability and need for efficacy have been documented
313in previous peer tutoring literature (Fantuzzo et al. 1989; Robinson et al. 2005), and the
314need for relevance is well-known (Bernsen et al. 1997). However, one of the surprising
315elements of the Speed Dating analysis was that the computer is ascribed a social rather than
316functional role when interacting with the peer tutor. This result is not necessarily predicted
317by the literature, which suggests that in a computer-mediated context, people react
318differently to humans and computers (Rosé and Torrey 2005). The fact that the computer
319support in this context might conflict with the peer tutor’s role as “teacher”, threatening
320peer tutor feelings of being a good tutor, is interesting and important for the support design.
321Although previous work discusses how efficacy is important to peer tutors, it is not clear
322from this literature that efficacy, among many other motivational factors, should be a
323primary consideration in the design of computer support. In addition, the design exercise
324further revealed particular implications of the three design principles for accepting or
325rejecting certain varieties of assistance. For example, students’ opinion that feedback to the
326peer tutor should never be delivered solely to the tutee is an important insight into how
327manipulating the target of the support might affect feelings of efficacy. It also argues for
328rejecting peer-mediated feedback delivered to the tutee as an option for assistance. The
329insights gleaned from the Speed Dating activity formed the basis for our design of adaptive
330support for peer tutor help giving, which is described in the next section.

331Phase 2: Assistance design

332In our previous research, we constructed APTA (the Adaptive Peer Tutoring Assistant) to
333support students in tutoring each other on literal equation solving. As part of this system,
334we developed adaptive cognitive support to facilitate peer tutor reflection on errors and
335improve the correctness of peer tutor help. We used the design principles introduced above
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336and student suggestions during the Speed Dating activity to refine the initial assistance
337scenarios, yielding three broad forms of assistance:

3381. Hints on demand. Given when the peer tutor does not know how to proceed.
3392. Adaptive resources. Provided when the peer tutor needs support in constructing help.
3403. Reflective prompts. Delivers feedback on help peer tutors have already given.

341By incorporating a variety of adaptive help-giving assistance, we could examine how
342different assistance affected motivation, interaction, and learning. We generated prototypes,
343and conducted four iterations of think-aloud sessions, creating higher-fidelity versions with
344each iteration, until we arrived at our current system.

345Previous version of APTA

346In APTA, students work on literal equation problems where they are given an equation like
347“ax + by = c” and a prompt like, “Solve for x”. Students are seated at different computers,
348and at any given time, one student is the peer tutor and the other is the tutee. Tutees can
349perform operations on the equation with a menu-based interaction used in the common,
350individual version of the Cognitive Tutor Algebra (CTA). See Fig. 2 for a screenshot of the
351tutee’s interface. Using the menus, students can select operations like “subtract from both
352sides”, and then type in the term they would like to subtract (#2 in Fig. 2). For some
353problems, the computer then performs the result of the operation and displays it on the
354screen (#3 and #4 in Fig. 2); for others, the tutee must type in the result of the operation
355themselves. The peer tutors can see the tutee’s actions on their computer screen, but are not
356able to perform actions in the problem themselves (see Fig. 3 for a screenshot of the peer
357tutor’s interface, #5). Instead, the peer tutor can mark the tutee’s actions right or wrong (#6
358in Fig. 3), and raise or lower tutee skill assessments in the skillometer window (#1, Fig. 3).
359Students can discuss the problem in a chat window (#1 in Fig. 2 and #4 in Fig. 3).
360To facilitate the discussion in the chat window, we included a common form of fixed
361scaffolding: sentence classifiers. This form of fixed scaffolding is thought to be
362pedagogically beneficial by making positive collaborative actions explicit in the interface

Fig. 2 Tutee’s problem-solving interface. The tutee solves problems using the menu, chats with their partner
in the chat window, and receives feedback in the solver and skillometer
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363and encouraging students to consider the type of utterance they wish to make (Weinberger
364et al. 2005). We asked peer tutors to label their utterances using one of four classifiers:
365“ask why”, “explain why wrong”, “give hint”, and “explain what next” (#8 in Fig. 3).
366Students had to select a classifier before they typed in an utterance, but they could also
367choose to click a neutral classifier (“other”). For example, if students wanted to give a
368hint, they could click “give hint” and then type “subtract x”. Their utterance would appear
369as: “tutor hints: subtract x” to both students in the chat window. Tutees were also asked to
370self-classify each utterance as one of three categories: a “ask for help”, “explain yourself”,
371or “other”.
372We attempted to trigger peer tutor reflective processes by providing tutors with
373adaptive domain assistance that supported them in identifying and reflecting on tutee
374errors. We intended that this assistance have the additional benefit of ensuring that the
375tutee received more correct help than they otherwise would have. We implemented
376cognitive help for the peer tutor from the intelligent tutoring system in two cases. First,
377the peer tutor could request a hint from the CTA and relay it to the tutee. Second, if the
378peer tutor marked something incorrectly in the interface (e.g., they marked a wrong step
379by the tutee correct), the intelligent tutor would highlight the answer in the interface,
380and present the peer tutor with an error message. Hints and error messages were
381composed of a prompt to collaborate (e.g., “Your partner is actually wrong. Here is a

Fig. 3 Peer tutor’s interface. Square labels represent possible peer tutor actions in the interface. Round labels
represent the support peer tutors receives from the adaptive system
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382hint to help you explain their mistake.”), and the domain help the tutees would have
383received had they been solving the problem individually (e.g., “Subtract x to move to
384the other side.”). Further, if both students agreed the problem was done, and were
385incorrect, the peer tutor would be notified and told to ask for a hint about how to complete
386the problem. Students were not allowed to move to the next problem until the current
387problem was successfully completed.

388Including adaptive help-giving assistance in APTA

389In the current system we augmented this cognitive assistance with three types of help-
390giving assistance, designed based on the principles identified in Phase 1. The first type of
391assistance, hints on demand, is used for instances when the peer tutor (for convenience, we
392will call her Sara) does not know how to help the tutee (we will call him James). There may
393be moments where James has asked for help, and Sara does not know what the next step to
394the problem is or how best to explain it. In this case, Sara would click on a hint button,
395found in the top right corner of the interface (#3 in Fig. 3), and receive a multi-level hint on
396both how to solve the problem and how to help her partner. The hint opens with a
397collaborative component (“Remember to explain why your partner should do
398something, not just what they should do”), and then contains the cognitive component
399that the tutee would have originally received had they been using the CTA individually
400(“You can subtract qcv from both sides of the equation to eliminate the constant value of
401qcv [qcv –qcv = 0]“; see #9, Fig. 3). If Sara still doesn’t understand what to do and clicks
402next hint, both the collaborative and the cognitive component become more specific, until
403the cognitive component ultimately reveals the answer to Sara. The collaborative
404component uses several strategies to encourage students to give more conceptual help,
405and is adaptively chosen based on the current problem-solving context (e.g., it varies
406depending on whether the tutee has most recently taken a correct step or an incorrect
407step). Sara is intended to integrate the cognitive assistance for how her tutee, James,
408should proceed in the problem with the collaborative assistance on what kind of help she
409should give. In this case, Sara might use the information she received to tell James
410“Eliminate the constant value of qcv”. This hint does not reveal the answer to the tutee,
411but includes relevant and correct domain content.
412There may be cases where even after examining the adaptive hints, Sara is still unsure
413how to use the hints to give the tutee appropriate feedback (e.g., how to give help that refers
414to information James already knows). We designed the adaptive resources to further assist
415the peer tutor in constructing good help. When Sara clicks the “give hint” sentence
416classifier to prepare to compose a hint to her partner (#8 in Fig. 3), she is presented with a
417resource (#2 in Fig. 3), with content tailored to the current problem type, which provides
418examples of what a good hint would be within the context of this problem type. We had
419four separate sets of resources mapping to each type of sentence classifier (one for “ask
420why”, one for “explain why not”, one for “give hint”, and one for “explain next step”). As
421the resource presents several sample hints for the whole problem, Sara has to actively
422process the resource in order to determine which kind of hint might apply to the
423information she has to convey. We expected that Sara would use the adaptive hints and
424resources together to construct help.
425Once Sara has given help to her partner, she might receive a reflective prompt in the chat
426window that appears simultaneously to both students and targets peer tutor help-giving
427skills that need improvement (#7 in Fig. 3). For example, if Sara is a novice tutor she may
428give a novice hint like “then subtract” rather than a conceptual hint like “to get rid of qcv,
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429you need to perform the inverse operation on that side of the equation.” In that case, the
430computer uses its assessment of Sara’s help-giving skill to say in the chat window (visible
431to both Sara and James), “James, do you understand the reason behind what Sara just said?”
432This utterance is designed to get both James and Sara reflecting on the domain concepts
433behind the next step, and to remind Sara that she should be giving help that explains why in
434addition to what. Prompts could be addressed to the peer tutor (e.g., “Tutor, can you
435explain your partner’s mistake?”) or the tutee (e.g., “Tutee, do you know what mistake
436you made?”), and were adaptively selected based on the computer assessment of help-
437giving skills (see below). They contained both praise and hedges, such that the
438computer’s voice never publicly threatened the peer tutor’s voice. Students also
439received encouragement when they displayed a particular help-giving skill (e.g., “Good
440work! Explaining what your partner did wrong can help them not make the same
441mistake on future problems”). In addition to receiving prompts related to the help
442given, there were prompts encouraging students to use sentence classifiers more
443effectively (e.g., “The buttons underneath the chat [e.g., “Give Hint”] can help you let
444your partner know what you’re doing”). Only one reflective prompt was given at a
445time, and parameters were tuned so that students received an average of one prompt for
446every three peer tutor actions. There were several different prompts for any given
447situation, so students rarely received the same prompt twice.
448In order to decide when to give students reflective prompts, we built a model for
449good peer tutoring which assessed whether students displayed four help-giving skills:
450help in response to tutee errors and requests, help that targets tutee misconceptions,
451help that is conceptual and elaborated, and the use of sentence classifiers to give help.
452Our main focus was on supporting peer tutors in giving conceptual elaborated help, and
453we discussed how the use of sentence classifiers might facilitate that by encouraging
454peer tutors to reflect more on the help they give. Similarly, by encouraging peer tutors
455to target tutee misconceptions, we encouraged them to reflect and elaborate more on the
456concepts involved in solving the problem in general. Finally, by encouraging peer tutors
457to give help when tutees need it, we actively discouraged them from giving
458instrumental help after tutees take correct steps, a common approach that students
459take. While these skills should also benefit tutee learning from peer tutoring, our
460primary focus for the time being was on the elaborative processes triggered by peer
461tutor help-giving, and the learning that might ensue. To assess peer tutor performance,
462the model used a combination of several inputs. First, it used CTA domain models to
463see if tutees had recently made an error (and thus if they needed help). Next, it used
464student interface actions, including tutor self-classifications of chat actions as prompts,
465error feedback, hints, or explanations, to determine what the students’ intentions were
466when giving help. Finally, it used TagHelper (Rosé et al. 2008), a toolkit for automated
467text classification that has been successfully deployed in educational contexts, to build a
468machine classifier trained on previous study data (Cohen’s kappa = .82 for the previous
469dataset). The classifier could automatically determine whether students were giving help,
470and whether the help was conceptual. Based on a combination of these three sources of
471information, we used a simple computational model composed of 15 rules to assess each
472peer tutor action taken. We used Bayesian knowledge tracing (Corbett and Anderson
4731995) to update a running assessment of peer tutor mastery of conceptual help, targeted
474help, timely help, and appropriate use of sentence classifiers. If, after any given peer tutor
475action, a given tutor skill fell within a predefined threshold for that skill, students were
476given a reflective prompt targeting that skill. We defined thresholds both for positive and
477negative feedback.
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478Discussion

479We expected APTA to have several positive cognitive and motivational effects. We
480designed adaptive support to give students relevant knowledge when they can apply it on
481how they can improve the conceptual content of their help. Additionally, as students using
482APTA received a lot of assistance that directly encourages students to use classifiers
483appropriately, we expected that the adaptive assistance would also have a positive effect on
484how often and how accurately students used classifiers. We were further interested in
485exploring how the way we designed the adaptive support motivated students to interact with
486and apply the support, based on the principles derived in Phase 1. We hypothesized that we
487had engaged the Relevance Design Principle in the hints on demand, where we gave a
488collaboration hint in conjunction with a context-relevant cognitive hint. By seeing
489immediately how the collaboration hint applies to the cognitive hint, students may perceive
490the collaboration hint as more relevant. This principle is also applied in the adaptive
491resources, which are directly linked to student choice of sentence classifier, ideally
492motivating students to interpret and apply the resources. The Accountability Design
493Principle was engaged in the adaptivity of the conceptual resources and in the reflective
494prompts. The reflective prompts were presented publicly, putting more of an onus on the
495peer tutor to follow the prompt. This feeling of accountability was likely augmented by the
496way the resources changed as students select different classifiers, suggesting to students that
497they should be putting thought into the help they give. We employed the Efficacy Design
498Principle by formulating prompts in ways that provide positive feedback and add to what
499the peer tutor is trying to do, rather than contradict it.

500Phase 3: In vivo experiment

501We deployed APTA in a classroom experiment to examine the influence of the adaptive
502support on peer tutor help-giving behaviors. In order to determine whether it was indeed the
503way the support was designed that was producing a change in student behavior, we
504compared it to fixed support that provided the same collaborative instruction, but did not
505include adaptive elements. In this section, we describe a quantitative analysis of the effects
506of the adaptive support as compared to fixed support on interaction and learning. In the
507following section (Phase 4), we discuss a qualitative analysis exploring to what extent our
508designs for accountability, efficacy, and relevance had the desired impact.

509Study conditions

510The adaptive support condition included the adaptive resources, and reflective prompts
511described in the previous section. Furthermore, it included the traditional CTA hints on
512demand, and the cognitive hints and feedback from the previous version of APTA. The fixed
513support condition contained the same support content as the adaptive system, but the
514content was not presented adaptively (see Fig. 4). To create a fixed parallel to the adaptive
515cognitive support, where peer tutors were given domain hints and feedback, we provided
516students with annotated solutions to the current problem (#2 in Fig. 4), a technique that had
517been used as part of other successful peer tutoring scripts (e.g., Fantuzzo et al. 1989). With
518this fixed assistance, peer tutors could consult the problem solutions at any time, but would
519not receive feedback on whether their help was correct or whether the current problem was
520completed. To parallel the hints on demand, we gave students access to a “Random Tip”
521button that yielded multi-level randomly selected tips (#4 in Fig. 4). While the overall
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522content of tips was the same as the hints on demand, the tips were randomly selected rather
523than chosen adaptively. The random tips did not contain any adaptive cognitive content. For
524adaptive resources, we gave students access to the same resources as they had in the
525adaptive condition, but the resources did not change based on the sentence classifiers
526students selected—instead, students had to select which resource they wanted to view
527without additional guidance (#1 in Fig. 4). Finally, instead of receiving reflective prompts in
528the chat window, we gave students reflective collaborative tips between each problem, with
529parallel content to the reflective prompts present in the adaptive condition (#3 in Fig. 4).
530Each student was presented with 5 randomly chosen reflective statements after each
531problem was complete such as “Good work! Remember, hinting or explaining the
532reason behind a step can help your partner learn how to do the step correctly.” We
533chose that form of support also because it is common for students using a collaborative
534script to receive reflective prompts at fixed intervals. This approach was a reasonable
535way to provide students with similar content to the adaptive condition. A summary of
536support is shown in Table 1.

537Method

538Participants Participants were 104 high-school students (54 male, 50 female) from two
539high schools, currently enrolled in Algebra 1, Algebra 2, or Pre-Calculus. Both high

Fig. 4 Peer tutor’s interface in fixed support condition. Conceptual resources are not connected to sentence
classifiers, domain assistance is in the form of fixed problem solutions, reflective prompts are randomly
delivered between problems, and the students can request randomly selected collaboration tips
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540schools used the individual version of the CTA as part of regular classroom practice so
541students were used to working with the tutors. The literal equation solving unit that we used
542was a review unit for the students, and one that they had already covered in Algebra 1.
543Nevertheless, the concepts in the unit were difficult for the students to understand, and
544teachers were in favor of reviewing the unit. Students from each class were randomly
545assigned to one of the two conditions, and to either the initial role of tutor or tutee (later
546they switched roles). For the purposes of this analysis, we are interested in those students
547who interacted with the system as a tutor, and thus excluded 27 students who only took on
548the role of tutees; that is, they were absent on one or both supported tutoring days and were
549tutees on the days they were present. We further excluded one student who was partnered
550with a teacher when tutoring, and two students who played the role of tutor in both
551collaboration periods. A total of 74 students were included in the analysis.

552Procedure The study took place over the course of a month, spread across six 45-
553minute classroom periods. During the first period, students took a 15-minute pretest
554measuring domain learning. Then, in the second period, students spent 45 min in a
555preparation phase, solving problems individually using the CTA. Students worked on
556one of two problem sets, focusing on either factoring in literal equation solving or
557distributing in literal equation solving. The third and fourth periods were collaboration
558periods, where students were given partners, and tutored them on the problems they had
559solved in the second period, with either adaptive or fixed support. Students were given
560different partners for each of the two collaboration periods. They were paired with
561students who were in the same condition, but who had solved a different problem set
562during the preparation phase. Within these constraints, we assigned pairs randomly,
563with the exception of not pairing students teachers explicitly told us would not get
564along. Within a pair, students were randomly assigned to the tutor or tutee role during
565the first collaboration period, and then they took on the opposite role during the second
566collaboration period. In the fifth period, students collaborated with new partners without
567any adaptive support (as an assessment of their collaborative abilities) and in the sixth
568period, between 2 and 3 weeks after the completion of the study, students took a
569posttest to assess their domain learning.

t1.1 Table 1 Assistance differences in adaptive and fixed systems

t1.2 Assistance Type Adaptive System Fixed System

t1.3 Cognitive Feedback Must finish a problem before
moving on. Receive feedback
on marking actions.

Move to next problem when
students believe current
problem is complete. Seek
out feedback on marking
actions by accessing problem
solutions.

t1.4 Peer-Mediated Hints Receive integrated cognitive &
interaction hint

Seek out a cognitive hint by
accessing problem solutions.
Receive list of interaction tips
at the end of each problem.

t1.5 Conceptual Resources Get resource linked to selected
sentence classifiers.

Select resources and use
classifiers independently.

t1.6 Reflective Prompts Receive reflective prompts based
on dialog.

Receive reflective prompts
while waiting for next problem
to load.
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570Measures To assess students’ individual learning we used counterbalanced pretests and
571posttests, each containing 10 conceptual items, 5 procedural items, and 2 items that
572demanded a verbal explanation. Some of the conceptual items had multiple parts. The
573tests were developed by the experimenter, but adapted in part from Booth and
574Koedinger’s measures of conceptual knowledge in Algebra (2008). Tests were
575approved by the classroom teacher, and were administered on paper. We scored answers
576on these tests by marking whether students were correct or incorrect on each item part,
577computing the scores for each item out of 1, and then summing the item scores to get a
578total score.
579In order to analyze student collaborative process, we logged all semantic actions students
580took within the system, including tutee problem-solving actions, sentence classifiers
581selected by both students, and chat actions made by both students. Along with the student
582actions, we logged computer tutor responses, which includes both the system’s evaluation
583of the action and the assistance students received. Using this data, we computed the number
584of problems viewed by each student, and the number of problems correctly solved (in the
585fixed condition, students could move to the next problem without having correctly solved
586the previous one). We calculated the number of errors viewed by students when they took
587on the peer tutoring role, and the number of times peer tutors used each type of sentence
588classifier. Finally, we computed peer tutor exposure to the assistance in our system,
589including the number of times they received reflective prompts and the number of times
590they requested a cognitive hint.
591We segmented the dialog by chat messages (creating a new segment every time students
592hit enter), and two raters coded the chat data on several dimensions. We computed inter-
593rater reliability on 20% of the data, and the remainder of the data was coded by one rater
594and checked by a second. All disagreements were resolved through discussion. First, each
595help segment was coded for whether it constituted previous-step help, that is, help relating
596to an action tutees had already taken (e.g., “no need to factor because there is only one g”;
597Cohen’s kappa = 0.83), or whether it was next-step help, that is, help relating to a future
598action in the problem (e.g., “how would you get rid of 2h?”; Cohen’s kappa = 0.83).
599Finally, each help segment was coded for whether it contained a concept (e.g., “add ax” is
600purely instrumental help, while “add ax to cancel out the –ax” is conceptual). Cohen’s
601kappa for conceptual help was 0.72.

602Quantitative results

603We used quantitative interaction and learning data to determine if the peer tutor’s help
604quality increased because of the assistance they received, and if an increase in help quality
605translated into a learning improvement.

606Overall interaction context First, to get a sense of the context of student interaction, we
607examined whether there were systematic high-level differences between the two conditions
608in the way students solved problems and gave help. We used a MANOVAwith condition as
609the independent variable to evaluate the differences between conditions for the following
610variables: problems viewed, problems completed correctly, tutee errors viewed by tutors,
611and help given by tutors. The analysis revealed significant differences between conditions
612(Pillai’s Trace = 0.30, F [1, 72]=7.68, p=0.001). Table 2 displays the results of one-way
613ANOVAs for each dependent variable. The students in the fixed condition saw significantly
614more problems than students in the adaptive condition (row 1). Students in the fixed
615condition could skip past problems that gave them trouble (and occasionally did not realize
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616they had made a mistake), while students in the adaptive condition had to overcome
617every impasse they reached. However, both conditions completed similar numbers of
618problems correctly (row 2), and the total number of tutee errors viewed by peer tutors
619was not significantly different across conditions (row 3). Finally, the amount of help
620given by peer tutors was not significantly different across conditions (row 4). The ratio
621between errors viewed by the peer tutor and help given was roughly 4:3 in the adaptive
622condition and 1:1 in the fixed condition. In the following, we present count data of
623particular aspects of student interaction, and use negative binomial regression to test
624the relationship between variables. Unless otherwise noted, we will perform statistical
625tests on the raw data counts, but to better illustrate what occurred, we may also present
626ratios between the count data and context variables like errors viewed or total amounts
627of help.

628Amount of conceptual help Our main goal in the design of the adaptive assistance was to
629improve the quality of help given in the adaptive condition. This goal was operationalized
630as improving the amount of conceptual help given, since conceptual help is an indicator of
631the elaborative processes in peer tutoring, and a predictor of learning gains for both
632students. The effects of condition on conceptual help were significant (see Table 3, row 1).
633In total, roughly 20% of the help was conceptual in the adaptive condition, nearly double
634the percentage of help that was conceptual in the fixed condition (10%).

635Frequency and accuracy of classifier use In addition to improving the quality of student
636help-giving, we intended that the adaptive help would improve student use of interface
637features, and in particular, encourage students to use the sentence classifiers while chatting.
638As described in the Introduction section, sentence classifier use is theoretically related to
639help quality, and thus should be related to the amount of conceptual help that students give.
640Further, the more appropriately students use classifiers, the better intelligent systems are

t2.1 Table 2 Differences in problem-related actions across conditions

t2.2 Context variables Adaptive Fixed ANOVA results

t2.3 M SD M SD F(1, 74) p

t2.4 Problems seen 7.90 4.51 10.43 5.76 4.483 0.038

t2.5 Problems completed 7.26 4.42 7.60 4.37 0.113 0.738

t2.6 Errors viewed 15.71 8.56 12.63 8.41 2.44 0.122

t2.7 Help given 11.92 6.23 12.17 8.87 0.019 0.890

t3.1 Table 3 Differences in help quality between conditions, as measured by the amount of conceptual help
given and the way peer tutors used classifiers

t3.2 Interaction variables Adaptive Fixed Mann-Whitney results

t3.3 M SD M SD U p

t3.4 Conceptual help (n=74) 2.67 2.83 1.34 2.14 468.5 0.015

t3.5 Classifiers used (n=74) 7.95 6.77 4.28 5.78 371.5 0.001

t3.6 % help given with classifiers (n=71) 56.84% 33.7% 31.0% 34.4% 348.00 0.001
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641determining the content of student chat. Thus, one hypothesis we had was that students
642would use help-related classifiers (i.e., not the neutral “other” classifier) more frequently in
643the adaptive than in the fixed condition, regardless of the content of their utterances. This
644hypothesis was supported by the data (see Table 3, row 2). Students used roughly 2
645classifiers for every 3 errors in the adaptive condition, compared to 1 classifier for every 3
646errors in the fixed condition. However, while this measure reflected how often students
647used classifiers, it did not reflect the student’s purpose in using the classifiers. We also
648predicted that when peer tutors gave help to tutees, they would be more likely to label their
649utterance with one of the help-related classifiers than the “other” classifier. The percentage
650of help given using help-related classifiers was significantly greater in the adaptive
651condition than in the fixed condition (see Table 3 row 3), suggesting that students used
652classifiers appropriately more often in the adaptive condition. The percentage of non-
653help chats given using help-related classifiers were not significantly different between
654conditions, suggesting that it was not increased classifier use overall that was driving
655the effect.
656We further explored the relationship between condition, sentence classifiers used, and
657conceptual help given. The number of classifiers used and conceptual help given were
658correlated (r[72]=0.442, p<0.01), but it was not clear whether condition had separate
659effects on classifiers used and conceptual help given, or whether the number of classifiers
660used influenced the amount of conceptual help given (as suggested by prior research on
661sentence classifiers). To explore these separate possibilities, we conducted a regression
662analysis to predict the amount of conceptual help given controlling for the number of
663classifiers used. We used student condition, the number of sentence classifiers used, and the
664amount of help given overall as predictor variables. The model was indeed statistically
665significant (χ2(3, N=74)=33.287, p<0.001). Condition was a significant predictor of
666conceptual help given (β=0.687, χ2(1, N=74)=5.84, p=0.016), as was the amount of help
667given (β=0.087, χ2(1, N=74)=22.97, p<0.001). Classifiers used were marginally
668predictive (β=0.042, χ2(1, N=74)=3.78, p=0.052). Based on these results, when help
669given and classifiers used are held constant, the adaptive condition is responsible for about
6701.98 more instances of conceptual help than the fixed condition. This analysis suggests that
671while both help given and classifiers used were predictive of conceptual help given,
672condition had an independent effect.

673Learning outcomes Finally, we looked at whether learning outcomes varied between the
674two conditions. The adaptive condition had a mean pretest score of 33.53% (SD=
67525.11%) and posttest score of 40.55% (SD=21.50%). The fixed condition had a mean
676pretest score of 39.13% (SD=23.92%) and posttest score of 47.10% (SD=26.28%). We
677conducted a two-way repeated-measures ANOVA with condition as a between-subjects
678variable and test-time as a within-subjects variable. We used only students who had
679participated in the pretest, posttest, and an intervention phase as a peer tutor. All students
680learned (F [1, 49]=11.97, p=0.001), but there were no significant learning differences
681between conditions (F [1, 49]=0.048, p=0.828). 682

683Phase 4: Case studies

684The adaptive support improved two aspects of peer tutor help given compared to the
685fixed condition: conceptual content and use of sentence classifiers. We next investigated
686to what extent the positive influence of the adaptive support on help-giving was related
687to the hypothesized desired effects on student motivational factors, following the design
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688principles identified in Phase 1. We present one case representative of the positive
689effects of accountability on student help-giving, and one case representative of the
690negative effects of a lack of perceived relevance. We use both cases to discuss the
691influence of efficacy on student help-giving. While there are likely many contextual
692factors contributing to the influence of support on student help-giving, we limit our
693discussion here to the three identified principles, in order to better follow up on the
694Phase 1 results.

695A case of accountability & elaborative processing

696With this case study of Dyad 1, we illustrate how feelings of accountability to be good
697tutors engendered by the adaptive support encouraged dyads to engage in elaborative
698processing. In this dyad, the peer tutor scored 55% on the posttest, and the tutee scored
69920%. The interaction occurred on the second tutoring day, and concerned the problem kj –
700mk = fr, solve for k. It was the second problem the dyad had seen that day, but the first with
701this form. Over the course of the interaction, the different assistance types increased the
702peer tutor’s accountability to knowledge and to reasoning – that is, her effort to give the
703correct answer and to give a conceptual explanation for her answer. The interaction begins
704with the tutee asking for help (see Table 4, row 1). When the peer tutor clicks on the
705sentence classifier “explain next step” to compose her response, the peer tutor receives a
706resource on how to construct good explanations. On first glance, the resource appears to
707have little effect, as only 10 s pass between the time the resource is presented in the
708interface and the time the peer tutor’s response is submitted, and the peer tutor gives
709instrumental help (“add mk to both sides”; row 4). However, the simple presentation of this
710resource begins to establish the expectation that peer tutors are expected to put thought into
711the help that they give. A second type of assistance is presented immediately after the peer
712tutor has delivered her instrumental help: the computer says in the chat window, where both
713collaborators can see it (“Tutee, did you understand the reason behind what the tutor just
714said?”; row 5). Not only is the computer prompting the tutee to reflect, but it is also
715publicly reminding the peer tutor that help should include an explanation in addition to an
716instruction, further increasing the peer tutor’s accountability for giving elaborated help. In
717fact, the tutee responds to this prompt with evidence of deep processing (row 7): “Does it
718matter that there’s a k on the right side?” The tutee is reflecting on features of the problem
719that are relevant for attaining the problem solution. After the tutee has in fact added mk, and
720the peer tutor has marked the step wrong, the computer further enforces the peer tutor’s
721accountability to provide help by saying privately to the peer tutor: “This step is wrong.
722Give your partner some advice on what to do next.” At this point, the peer tutor’s response
723represents a breakthrough in the peer tutor’s helping behaviors. The peer tutor responds
724with a conceptual statement, saying “the computer wants you to subtract kj from both sides,
725because of the other k in the problem” (row 12). This statement explains what the tutee
726should do, explains why, and alludes to the concept that all ks in this problem have to be on
727the same side, suggesting that the peer tutor is reflecting on the next step and elaborating on
728her knowledge. It is the first conceptual statement made by this particular peer tutor. This
729insight on the part of the tutor, and articulation of the insight to the tutee, had benefits for
730both parties. The error that Dyad 1 made during this problem required them to master the
731concept that to solve for a given variable all instances of the variable need to be moved to
732the same side of the equation. Both the tutor and the tutee in the dyad got a similar problem
733correct on the individual posttest, suggesting that as a result of this interaction, they had
734mastered the discussed concept.
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735A case of support relevance & shallow processing

736While peer tutors appeared to find adaptive help on how to solve the problem extremely
737relevant, they did not have a similar response to adaptive assistance on how to give good
738help, potentially leading them to process the problem shallowly. The case of Dyad 2 in
739Table 5, who engaged in suboptimal interaction, is from the first tutoring day (the third
740study period); the dyad was solving the problem 6t – qt = wr + qv. This was their ninth
741problem of the day, but the first problem they had encountered where they had to move two
742variable instances to the same side. The peer tutor had scored 23% on the pretest, and the
743tutee had scored 38%. The following dialogue begins when the tutee had reached the
744equation 6 t - wr = qt + qv, but then incorrectly divided both sides by vt instead of v + t. The
745tutee triggers the exchange using a question that shows the tutee is reflecting on the
746situation (“It won’t let me get rid of the v and t. Help me”; row 1). The peer tutor asks for a
747hint, but then only transfers the instrumental component of the hint to the tutee (“Multiply
748both sides by vt”; row 6), suggesting that while the peer tutor feels that the domain help is
749relevant, he doesn’t perceive the conceptual scaffolding as relevant. As in the previous
750scenario, the computer prompts the tutee for further explanation (“eagle, can you talk about
751why you took that last step?”; row 7), but this only serves to confuse the students further
752(“what last step?”; row 8), suggesting that the vague wording of the prompts may be a
753liability in this case. After getting more content-related feedback, and another hint, the peer
754tutor relays the hint to the tutee again (row 15). After this exchange, the tutee realizes his
755error and proceeds to solve the problem, without interacting further with the peer tutor. This
756lack of communication has effects on the posttest results: For Dyad 2 to solve this problem
757correctly, they needed to master the concept that to isolate the x in an expression like x(a +
758b) you need to divide by (a + b). Neither member of the dyad got the related conceptual
759question right on the posttest. Not surprisingly, the peer tutor in this interaction came out of
760the session unsure of how to use the computer help, saying in the following period when he

t4.1 Table 4 Case study demonstrating the positive effects of adaptive support on student interaction. Support
may trigger student feelings of accountability

t4.2 Solve for k: kj – mk = fr

t4.3 1 Tutee: [both] What should I do first?

t4.4 2 Tutor: [self] chooses “explain next step” classifier

t4.5 3 Agent: [tutor] gives resource on explanations

t4.6 4 Tutor: [both] Add mk to both sides.

t4.7 5 Agent: [both] Tutee, do you understand the reason behind what the tutor just said?

t4.8 6 Tutee: [both] adds mk to both sides of the problem

t4.9 Solve for k: kj = fr + mk

t4.10 7 Tutee: [both] Does it matter that there’s a k on the
right side?

t4.11 8 Tutor: [both] marks the “add mk” step correct

t4.12 9 Agent: [tutor] highlights step

t4.13 10 [tutor] This step is wrong. Give your partner some advice on what to do next

t4.14 11 Tutor: [tutor] chooses “comments” classifier

t4.15 12 [both] wait!!! I completely messed up… the computer wants you to subtract kj from
both sides, because of the other k in the problem. sorry = (

t4.16 13 Tutee: [both] haha, it’s alright, these problems are so simple but confusing.
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761was the tutee: “yeahh the tutor is confusing cuz it gives youu all this stuff to write about but
762I had no clue what to write when i was the tutor.” In summary: When this peer tutor gave
763help, he ignored the collaborative components of the hint he received and focused on the
764cognitive component, which contradicts what we had intended with our design.

765Peer tutor self-efficacy: Transfer of control

766We had also attempted to design feedback to maintain the peer tutors’ sense of tutoring self-
767efficacy. To a certain extent, the design appeared successful, and in some cases, the support
768we gave helped peer tutors to take control of the situation. For example, after one tutee
769added ax to both sides in the problem ax – y=8, and the peer tutor marked it right, the peer
770tutor received the feedback: “This step is not right. Tell your partner what mistake they
771made. Here is a hint to help you tutor your partner. Since a*x is positive, you should
772subtract to remove it from the left side. Erase your last step and subtract a*x from both
773sides.” In consequence, the peer tutor changed their response, marking the step wrong,
774and then smoothly gave the conceptual hint “It’s a positive ax you wouldn’t add u would
775subtract.” This peer tutor was adept at using the cognitive tutor hints to give their partner
776guidance, and while the peer tutor didn’t acknowledge his error, he did give error
777feedback to the tutee. However, sometimes students would attribute hints to the computer
778in order to indicate their uncertainty and to convey to their peer tutee a sense that they
779(peer tutor and tutee) are in the same boat. A good example of this phenomenon is in the

t5.1 Table 5 Case study demonstrating the problem with perceived relevance of adaptive support. While the peer
tutor perceived domain support as relevant, he did not use the interaction support

t5.2 Solve for q: (6 t – wr)/vt = (qt + qv)/vt

t5.3 1 Tutee: [both] It won't let me get rid of the v and t. Help me.

t5.4 2 Tutor: [agent] requests hint

t5.5 3 Agent: [tutor] [[Collab]]. What can you do to both sides to
get the q by itself? In (qv + qt)/vt, qv + qt is
divided by vt. How do you undo division?
Multiply both sides by vt.

t5.6 4 Tutor: [self] chooses "give hint" classifier

t5.7 5 Agent: [tutor] gives resource on hints

t5.8 6 Tutor: [both] Multiply both sides by vt

t5.9 7 Agent: [both] Tutee, can you talk about why you took that last step?

t5.10 8 Tutee: [both] What last step? The simplifying fractions?

t5.11 9 Tutor: [both] marks the simplifying
fractions step right

t5.12 10 Agent: [tutor] This step is wrong. Get your partner to think
about what to do next.

t5.13 11 Tutor: [agent] requests hint

t5.14 12 Agent: [tutor] [[Collab]]. What can you do to both sides to get
the q by itself? In (qv + qt)/vt, qv + qt is divided
by vt. How do you undo division? Multiply both
sides by vt.

t5.15 13 Tutor: [self] chooses "give hint" classifier

t5.16 14 Agent: [tutor] gives resource on hints

t5.17 15 Tutor: [both] Delete the last 3 steps and multiply both sides by vt
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780first case study, where the peer tutor both attributes the hint to the computer, and
781apologizes for the confusion (“wait!!! I completely messed up… the computer wants you
782to subtract kj from both sides, because of the other k in the problem. sorry = (“).
783Interestingly, the peer tutor gives a much more elaborated hint than the one she had
784received from the computer, but still attributes the hint to the computer, probably to
785indicate her own lack of confidence in the solution. The same students from Dyad 1
786verbally expressed similar sentiments at several points, bonding over their own
787inexpertise: The peer tutor said, “wow… this is so confusing!” The peer tutee replied,
788“I’m glad I’m not the only one who’s confused! hahaha”. Those two students went on to
789be successful at solving the problem. Against our designs, it appeared that the peer tutor
790indicating uncertainty and attributing help to the computer was beneficial for the tutor-
791tutee relationship, suggesting that in some cases, constant maintenance of peer tutoring
792efficacy was not as necessary as the peer tutor being able to transfer control to the
793computer, shifting between expert and novice.

794General discussion

795In this paper, we described a four-phase design process for developing adaptive assistance
796for help-giving in a peer tutoring context. First, we used Speed Dating, a human-computer
797interaction design method, to generate three principles for designing adaptive support for
798collaborating students. On the basis of the three principles we developed three types of
799help-giving assistance for our peer tutoring system: hints on demand, conceptual resources,
800and reflective prompts. We evaluated the resulting system in an in vivo experiment, and
801found that compared to a fixed support condition, the adaptive assistance improved the
802conceptual content of student help and their use of sentence classifiers. Case analyses of
803process data of two dyads from the adaptive condition suggested that while we successfully
804designed to increase student accountability, we were not as successful at increasing the
805perceived relevance of the adaptive collaboration support. In this section, we discuss the
806theoretical conclusions and design implications of our empirical results, and the promise of
807iterated in vivo experimentation.

808Theoretical conclusions

809Our results add to the small but growing body of evidence that adaptive support can
810improve the quality of student collaboration. Previous research in the effects of adaptive
811support compared to a fixed control has found that adaptive support can increase student
812learning (Kumar et al. 2007), but little is known about how adaptive support affects
813collaborative process. Our research provides direct evidence of the effects of adaptive
814support on a specific facet of student interaction: tutor help-giving. We found that the
815adaptive support led students to increase the conceptual help content of their utterances
816compared to fixed support. Help-giving is one of the positive aspects of collaboration
817specified by Johnson and Johnson (1990), and conceptual content is widely recognized as
818an important component of help-giving (Fuchs et al. 1997; Webb and Mastergeorge 2003).
819Thus, our intervention (and in particular, the use of adaptive reflective prompts) could
820potentially be applied to other collaborative scenarios that would benefit from an
821improvement in the conceptual quality of student help-giving in text-based chat (such as
822the Virtual Math Teams system; Stahl 2009). Our system also used simple adaptive prompts
823to improve the way peer tutors used sentence classifiers for their help-giving, in that they
824chose to use help-related sentence classifiers more often and more accurately. Applying a

E. Walker, et al.

JrnlID 11412_ArtID 9111_Proof# 1 - 17/01/2011



EDITOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

825similar method to other systems that incorporate sentence classifiers and starters may make
826those other interventions more effective. For example, introducing reflective prompts into
827the GroupLeader system may improve the difficulties the system developers have
828encountered in getting students to use sentence starters accurately ( Q10Israel and Aiken
8292007). We did not find effects of adaptive support on student learning, compared to fixed
830support, but our study was a short-term study, and attrition between the intervention and the
831posttest was rather large. In theory, well-designed adaptive support will, in the end, have a
832positive effect on student learning.
833Our design principles, informed by our qualitative results, contributed to the research
834into how students are motivated by peer tutoring. While most studies have looked broadly
835at how reward structures increase student accountability (e.g., Fuchs et al. 1997), they have
836not examined how this mechanism might be working during the interaction. Our design
837work in Phase 1 and the qualitative analyses in Phase 4 support the conclusions of previous
838experimental manipulations by demonstrating that students feel accountable to be good peer
839tutors to their partners, and that this accountability increases when relevant and public
840support is given to tutors (i.e., when peer tutor responsibility is primed). With the increase
841in accountability, students put more effort into constructing help and applying the assistance
842they received to their help, potentially engaging in more cognitive elaborative processes.
843This result suggests that it may not be the adaptivity of the support that is creating these
844results, but the perceived adaptivity. In other words, a different fixed control that takes the
845form of random prompts in the chat window may have the same effect as adaptive support,
846if students perceive the prompts as adaptive and are thus motivated to feel more
847accountable for the help they construct.
848Given this analysis, and the effects of the support on student help behavior but not
849on learning outcomes, it is still an open question whether the effort and expense
850required to develop adaptive systems for collaboration is worth the result. Our
851classroom study had several limitations, including that the sample size was relatively
852small, and that the experimental manipulation included different types of support, which
853may have made the system unnecessarily complicated for students to use. Another
854study is necessary to tease apart to what extent adaptivity has cognitive benefits (i.e.,
855students get the support at the correct time and thus benefit more), and to what extent it
856has motivational benefits (i.e., students feel accountable for incorporating support
857because they believe it is adaptive). Ideally, this study would have a larger sample size,
858take place in a more controlled environment, and vary only one type of adaptive
859support. If the results of this future study suggest that adaptive support only has
860motivational benefits, and that the adaptiveness itself does not lead to learning, then it
861is likely that research on supporting collaboration should focus elsewhere. On the other
862hand, if the results of this future study suggest that adaptivity is important and adaptive
863support has learning benefits, research on achieving adaptivity of support should indeed
864be encouraged, despite the expense.

865Design implications

866Our results also have direct implications toward defining a design space for ACLS that can
867inspire future research. As described in the introduction, most ACLS support is very similar
868in the way it provides feedback to students. This similarity can be conceptualized on two
869dimensions: the feedback is usually directly delivered to the ineffective collaborator, and it
870is explicit with respect to telling the ineffective collaborator what they did wrong and how
871to fix it. The assistance used as part of needs identification in Phase 1 and incorporated in
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872our system in Phase 2 covers a much broader design space. The hints on demand we
873provide has a direct and explicit component, but also a peer-mediated component: we
874expect the peer tutor to benefit from receiving domain help and communicating it to the
875tutee. The conceptual resources are directly presented to the peer tutor, but they are implicit
876in nature: The peer tutor is expected to read the content and determine how to use it to
877generate good help in that particular situation. The reflective prompts we included in the
878system are situated somewhere in the middle of the design space, they are presented to both
879students, and worded in a general way.
880While it is difficult to directly compare different assistance types in our experimental
881design, we can draw some links to research questions about how varying explicitness and
882directness might impact the adoption of support. First, how does directness influence
883accountability? In our study, students appeared to feel more accountable to use support
884meant for their partner (i.e., the cognitive hints) or support that was publically delivered (i.
885e., the reflective prompts) than support that was delivered directly and only to the peer tutor
886(i.e., the collaborative portion of the hints, and the adaptive resources). Future studies could
887tease out the effects of directness from the effects of support type. A second research
888question might be: What effects does explicitness have on relevance and efficacy? While
889students appeared to find the most explicit support to be the most relevant, particularly in
890Phase 1, peer tutors also resented any support that undermined their ability to tutor. In
891general, by developing a sense of how different features of adaptive collaboration support
892affect how students react, we can design effective adaptive support tailored to particular
893student populations and contexts.

894Iterated in vivo experimentation

895To conclude, we would argue that the iterated in vivo experimentation design process we
896have described in this paper represents a fruitful combination of design research and
897controlled experimentation. It is true that this approach has certain drawbacks; we lack the
898full ecological context and deep evaluation that design research brings, and we lack the full
899control provided by psychological experimentation. However, this approach has unique
900value in that it effectively finds a balance between tradeoffs commonly found in learning
901sciences research. Our approach balanced experimental control and ecological validity by
902allowing us to draw conclusions about how adaptive support affects student behavior while
903maintaining a holistic perspective. For example, our choice to evaluate multiple types of
904adaptive assistance simultaneously represented a loss in experimental control, as we varied
905multiple dimensions of support. However, it allowed us to examine the effects of each type
906of assistance through an analysis of the process data, and thus draw richer conclusions
907about how support might affect student motivation. Similarly, our use of mixed methods in
908combining quantitative data with qualitative analyses allowed us to link accountability to
909the quality of student help-giving in a way that would be difficult had we not combined the
910approaches. Without the qualitative data it would have been difficult to determine why
911student use of conceptual help improved; but without the quantitative data, it would have
912been difficult to determine how differences between isolated cases mapped to systematic
913differences between conditions. Finally, one of the contributions of our particular process is
914that, through our use of human-computer interaction design methods such as Speed Dating,
915we treated the students as “users” instead of just “learners”. We designed for use by
916analyzing how students perceived and reacted to the support, instead of solely examining
917which support was likely to lead to the most learning. This approach served as a good
918precursor to designing a form of assistance students do not typically receive, and letting us
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919know what to expect in terms of how students interact with that kind of assistance. By
920designing a system that responded to student motivational needs, we hoped to ultimately
921have a more positive effect on their learning as well. In summary, as a result of our
922approach of iterated in vivo experimentation, we have made theoretical contributions to the
923literature on adaptive support for collaborative learning, and defined a space for future
924experimental and design research.
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