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11Abstract The relationship between interaction and learning is a central concern of the
12learning sciences, and analysis of interaction has emerged as a major theme within the
13current literature on computer-supported collaborative learning. The nature of technology-
14mediated interaction poses analytic challenges. Interaction may be distributed across actors,
15space, and time, and vary from synchronous, quasi-synchronous, and asynchronous, even
16within one data set. Often multiple media are involved and the data comes in a variety of
17formats. As a consequence, there are multiple analytic artifacts to inspect and the interaction
18may not be apparent upon inspection, being distributed across these artifacts. To address
19these problems as they were encountered in several studies in our own laboratory, we
20developed a framework for conceptualizing and representing distributed interaction. The
21framework assumes an analytic concern with uncovering or characterizing the organization
22of interaction in sequential records of events. The framework includes a media independent
23characterization of the most fundamental unit of interaction, which we call uptake. Uptake
24is present when a participant takes aspects of prior events as having relevance for ongoing
25activity. Uptake can be refined into interactional relationships of argumentation,
26information sharing, transactivity, and so forth for specific analytic objectives. Faced with
27the myriad of ways in which uptake can manifest in practice, we represent data using
28graphs of relationships between events that capture the potential ways in which one act can
29be contingent upon another. These contingency graphs serve as abstract transcripts that
30document in one representation interaction that is distributed across multiple media.
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31This paper summarizes the requirements that motivate the framework, and discusses the
32theoretical foundations on which it is based. It then presents the framework and its
33application in detail, with examples from our work to illustrate how we have used it to
34support both ideographic and nomothetic research, using qualitative and quantitative
35methods. The paper concludes with a discussion of the framework’s potential role in
36supporting dialogue between various analytic concerns and methods represented in
37CSCL.

38Keywords Q1Theoretical and methodological framework . Interaction analysis . Distributed
39learning . Uptake . Contingency graphs
40

41Introduction

42Researchers, designers, and practitioners in the learning sciences and allied fields study a
43variety of technology-supported settings for learning. These settings may include tightly
44coupled small group collaboration, distributed cooperative activity involving several to
45dozens of persons, or large groups of loosely linked individuals. Examples include
46asynchronous learning networks (Bourne et al. 1997; Mayadas 1997; Wegerif 1998),
47knowledge building communities (Bielaczyc 2006; Scardamalia and Bereiter 1993), mobile
48and ubiquitous learning environments (Rogers and Price 2008; Spikol and Milrad 2008),
49online communities (Barab et al. 2004; Renninger and Shumar 2002), and learning in the
50context of “networked individualism” (Castells 2001; Jones et al. 2006). These settings are
51diverse in many ways, including the degree of coupling between participants’ activities,
52varying temporal and social scales, and the supporting technologies used. However, they all
53rely on interaction to enhance learning. “Interaction” is used here in a broad sense,
54including direct encounters and exchanges with others and indirect associations via
55persistent artifacts that lead to individual and group-level learning. The common element is
56how participants benefit from the presence of others in ways mediated by technological
57environments.
58The distributed nature of interaction in technology-mediated learning environments
59poses analytic challenges. Interaction may be distributed across actors, media, space, and
60time. Mixtures of synchronous, quasi-synchronous, and asynchronous interaction may be
61included, and relevant phenomena may take place over varying temporal granularities.
62Participants may be either co-present or distributed spatially, and often multiple media are
63involved (e.g., multiple interaction tools in a given environment, or multiple devices).
64Furthermore, the data obtained through instrumentation comes in a variety of formats.
65There may be multiple data artifacts for analysts to inspect and share, and interaction may
66not be immediately visible or apparent, particularly when interaction that is distributed
67across media is consequentially recorded across multiple data artifacts. Interpretation of
68this data requires tracing many individual paths of activity as they traverse multiple tools
69as well as identifying the myriad of occasions where these paths intersect and affect each
70other.
71Other analytic challenges are also exacerbated by technology-mediated interaction.
72Human action is contingent upon its context and setting in many subtle ways. These
73contingencies take new forms and may be harder to see in distributed settings. Interpreting
74nonverbal behavior is also a challenge. When users of a multimedia environment
75manipulate and organize artifacts in ways implicitly supported by the environment,
76it may be difficult to determine which manipulations are significant for meaning
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77making. The large data sets that can be collected in technology-mediated settings lead
78to tensions between the need to examine the sequential organization of interaction
79within an episode and the need to scale up such analyses to more episodes and larger
80scale organization. We are challenged to understand phenomena at multiple temporal
81or social scales, and to understand relationships between phenomena across scales
82(Lemke 2001). See Q2Suthers and Medina (2009) for further discussion of these analytic
83challenges.
84We have encountered many of these challenges in our own research. This research
85includes a diverse portfolio of studies of co-present and distributed interaction, via various
86synchronous and asynchronous media, and at scales including dyads, small groups, and
87online communities. Our research methods have included experimental studies (Suthers and
88Hundhausen 2003; Suthers et al. 2008; Vatrapu and Suthers 2009), activity-theoretic
89and narrative analysis of cases ( Q3Suthers et al. 2007e; Yukawa 2006), adaptations of
90conversation analysis (Medina and Suthers 2008; Medina et al. 2009), and hybrid methods
91(Dwyer 2007; Dwyer and Suthers 2006). Through the diversity of our work, we have come
92to appreciate that the analytic challenges outlined above are not specific to one setting or
93method, and we have been motivated to find a solution that gives our work conceptual
94coherence rather than solutions that are specific to one type of environment and/or type of
95analysis.
96In order to address these challenges in a principled way, we developed the uptake analysis
97framework for conceptualizing, representing, and analyzing distributed (technology-
98mediated) interaction. We offer that framework in this paper in hopes that some aspects
99of it may also be useful to others. The representational foundation of this framework is an
100abstract transcript notation—the contingency graph—that can unify data derived from
101various media and interactional situations and has been used to support multiple analytic
102practices. The conceptual foundation of this framework includes uptake as a fundamental
103building block of interaction, and the basis for construing interaction as an object of study.
104Like any analytic framework, the uptake analysis framework carries theoretical assump-
105tions. However, it is not primarily a theory: It provides a theoretical perspective on how to
106look at interaction, but it does not provide explanations or make predictions. Nor is it
107primarily a single method: It is a coordinated set of concepts and representations with
108associated practices that support multiple methods of analyzing distributed interaction.
109These distinctions are why we call it a “framework.”
110This paper begins by elaborating on our motivations and requirements in the next
111section. The following section presents the conceptual, empirical, and representational
112foundations of the uptake analysis framework. We then detail practical aspects of
113applying the framework, and provide selected examples from our work to illustrate how
114it supports several types of analyses with multiple data sources. After a summary and
115discussion of limitations and extensions, we conclude with a discussion of its potential
116role in supporting dialogue between various analytic concerns and practices represented
117in CSCL.

118Motivations and requirements

119This work had its origins in our recognition of the analytic limitations of our prior
120work and our attempts to reconcile the strengths and weaknesses of two methodological
121traditions. The first author’s earlier research program tested hypotheses concerning
122“representational guidance” for collaborative learning in experimental studies where
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123participants’ talk and actions were coded according to categories relevant to the
124hypotheses, and frequencies of these codes were compared across experimental groups
125(Suthers and Hundhausen 2003; Suthers et al. 2003, 2008). While these studies suggested
126that representational influences were present, the statistical analyses as they were
127conceived did little to shed light on the actual collaborative processes involved and,
128hence, of the actual roles that the representations played. To address this problem, we
129began several years of analytic work to expose the practices of mediated collaborative
130learning in data from our prior experimental studies, beginning with microanalytic
131approaches inspired by the work of Tim Koschmann, Gerry Stahl, and colleagues
132(Koschmann et al. 2004, 2005). In an analysis undertaken in order to understand how
133knowledge building was accomplished via synchronous chat and evidence mapping tools,
134we applied the concept of uptake to track interaction distributed across these tools
135(Suthers 2006a). Subsequently, we began analyzing asynchronous interaction involving
136threaded discussion and evidence mapping tools ( Q4Suthers et al. 2007b). In conducting this
137work, we encountered limitations of microanalytic methods, discussed below. In
138response, we developed our analytic framework to handle the asynchronicity and
139multiple workspaces of our data, and with hopes of scaling up interaction analysis to
140larger data sets ( Q5Suthers et al. 2007a). Concurrently, we were pursuing a separate line of
141work on analyzing participation in online communities through various artifact-mediated
142associations (Joseph et al. 2007; Suthers et al. 2009). This work further motivated the
143development of a way of thinking about mediated interaction that would inform and unify
144the diverse studies that we were conducting. In this section, we discuss several recurring
145concerns that arose, including addressing the respective strengths and weaknesses of
146statistical and micro-genetic interaction analyses, and handling the diverse data derived
147from distributed settings in a manner that supports multiple approaches to understanding
148the organization of interaction.

149Statistical analysis

150Many empirical studies of online learning follow a paradigm in which contributions (or
151elements of contributions) are annotated according to a well-specified coding scheme (e.g.,
152De Wever et al. 2006; Rourke et al. 2001), and then instances of codes are counted up
153for statistical analysis of their distribution (e.g., across experimental conditions).
154Research in this tradition is nomothetic, seeking law-like generalities, and, in
155particular, is typically oriented toward hypothesis testing. This approach has significant
156strengths. Coding schemes support methods for quantifying consistency (reliability)
157between multiple analysts. Well-defined statistical methods are available for comparing
158results from multiple sources of data such as experimental conditions and replications
159of studies. Also, it is straightforward to scale up statistical analysis by coding more
160data.
161A limitation is that these practices of coding and counting for statistical analysis obscure
162the sequential structure and situated methods of the interaction through which meaning is
163constructed (Blumer 1986). Coding assigns each act an isolated meaning, and, therefore,
164does not adequately record the indexicality of this meaning or the contextual evidence on
165which the analyst relied in making a judgment. Frequency counts obscure the sequential
166methods by which media affordances are used in particular learning accomplishments,
167making it more difficult to map results of analysis back to design recommendations.
168Another limitation is that in common practice statistical significance testing is applied to
169preconceived hypotheses to be tested rather than oriented toward discovery. An analysis of
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170interaction might help researchers discover what actually happened that led to the statistical
171results—whether statistical significance was obtained as predicted, obtained in patterns that
172were not predicted, or absent. Such an analysis is only possible if the data was recorded in a
173form that retains its interactional structure. Our framework is intended to support statistical
174analysis in two ways: by providing sequential structures (as well as single acts) that can be
175coded and counted, and by recording these structures for interaction analysis that helps
176make sense of statistical results.

177Sequential analysis

178Several analytic traditions find the significance of each act in the context of the unfolding
179interaction. These traditions include Conversation Analysis (Goodwin and Heritage 1990;
180Sacks et al. 1974), Interaction Analysis (Jordan and Henderson 1995), and Narrative
181Analysis (Hermann 2003). Some of these traditions (especially the first two cited) draw
182upon the assertion that the rational organization of social life is produced and sustained in
183participants’ interaction (Garfinkel 1967). A common practice is microanalysis, in which
184short recordings of interaction are carefully examined to uncover the methods by which
185participants accomplish their objectives. Microanalysis is becoming increasingly important
186in computer-supported collaborative learning because a focus on accomplishment through
187mediated action is necessary to truly understand the role of technology affordances (Stahl et
188al. 2006). For examples applied to the analysis of learning, see Baker (2003), Enyedy
189(2005) Koschmann and LeBaron (2003), Koschmann et al. (2005), Roschelle (1996), and
190Stahl (2006, 2009).
191Microanalysis has somewhat complementary strengths and weaknesses compared to
192statistical analysis. It documents participants’ practices by attending to the sequential
193structure of the interaction, producing detailed descriptions that are situated in the medium
194of interaction. Yet analyses are often time consuming to produce, and are difficult to scale
195up. As a result, microanalysis is usually applied to only a few selected cases, leading to
196questions about representativeness or “generality” (but see Lee and Baskerville 2003, for
197arguments against basing generalization solely on sampling theory). Microanalysis is most
198easily and most often applied to episodes of synchronous interaction occurring in one
199physical or virtual medium that can be recorded in a single inspectable artifact, such as a
200video recording or replayable software log. Distributed interaction may occur in more than
201one place, and learning may take place over multiple episodes, problematizing approaches
202that assume that a single analytic artifact recorded in the medium of interaction is available
203for review and interpretation.
204The family of methods loosely classified as exploratory sequential data analysis
205(ESDA, Sanderson and Fisher 1994) provide a collection of operations for transforming
206data logs into representations that are successively more suitable for analytic
207interpretation. In Sanderson and Fisher’s (1994) terms, the operations are chunking,
208commenting, coding, connecting, comparing, constraining, converting, and computing.
209ESDA draws on computational support for constructing statistical and grammatical
210models of recurring sequential patterns or processes (e.g., Olson et al. 1994). Because of
211this computational support, ESDA can be scaled up to large data sets while still attending
212to the sequential structure of the data. On these points, ESDA compares favorably to the
213respective limitations of microanalysis and “coding and counting.” However, like
214statistical analysis, computational support risks distancing the analyst from the source
215data. Another limitation is that many of the modeling approaches use a state-based
216representation that reduces the sequential history of interaction to the most recently
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217occurring event category. Reimann (2009) presents a cogent argument for basing process
218analysis on an ontology of events rather than variables, and describes Petri net process
219models (from van der Aalst and Weijters 2005) that capture longer sequential patterns
220than state transitions. These approaches will be discussed further at the end of the paper.
221Our framework is intended to support both distributed extensions of microanalysis and
222ESDA approaches.

223Media generality

224Some analytic traditions use units of analysis and data representations that are based
225on the interactional properties of the media under study. Much of the foundational
226work in sequential analysis of interaction has focused on spoken interaction. The
227difficulty of speaking while listening and the ephemerality of spoken utterances
228constrain communication in such a manner that turns (Sacks et al. 1974) and adjacency
229pairs (Schegloff and Sacks 1973) have been found to be appropriate units of interaction
230for analysis of spoken data. These units of analysis are not as appropriate for interactions
231in media that differ in some of their fundamental constraints (Clark and Brennan 1991).
232For example, online media may support simultaneous production and reading of
233contributions, or may be asynchronous, and contributions may persist for review in
234either case. Consequentially, contributions may not be immediately available to other
235participants or may become available in unpredictable orders, and may address earlier
236contributions at any time (Garcia and Jacobs 1999; Herring 1999). It is not appropriate to
237treat computer-mediated communication as a degenerate form of face-to-face interac-
238tion, because people use attributes of new media to create new forms of interaction
239(Dwyer and Suthers 2006; Herring 1999). Because conceptual coherence of a set of
240contributions can be decoupled from their temporal or spatial adjacency, our framework is
241based on a unit of interaction that does not assume adjacency or other media-specific
242properties.
243Similarly, properties of distributed interaction place different demands on representations
244of data and analytic structures. Because technology-mediated interaction draws on many
245different semiotic resources, analysis of interactional processes must reassemble interaction
246from the separate records of multiple media, while also being sensitive to the social
247affordances of each specific medium being analyzed to distinguish their roles. A framework
248for analysis of mediated interaction must be media agnostic—independent of the form of
249the data under analysis—yet media aware—able to record how people make use of the
250specific affordances of media. This is required to allow analysis to speak to design and
251empirically drive the creation of new, more effective media. Our framework provides a
252means of gathering together distributed data into a single representation of interaction that
253does not make assumptions about media properties but indexes back to the original media
254records.

255Impartiality

256Any analytic program must be based on theoretical assumptions concerning what kinds of
257questions are worthwhile and what counts as data. Transcripts carry some of these
258theoretical assumptions (Ochs 1979), but this bias is not a fait accompli: We can actively
259shape the role of transcripts as representations in our analytic practices (Duranti 2006). We
260believe that analytic representations should minimize assumptions concerning the answers
261to the research questions posed, limiting assumptions to those necessary to ask those
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262questions in the first place. This desideratum applies to basic analytic constructs such as the
263choice of units of data to be analyzed (segmentation) and the fundamental relationships by
264which we characterize interaction. Because we are analyzing and theorizing about
265interaction from diverse settings, we want our data and analytic representations to support
266variable and multi-leveled granularities, and our basic unit of interaction to be neutral
267toward possible interpretations of that interaction.
268In summary, the considerations discussed in this section led us to address our
269practical analytic problems by developing an approach that records the sequential and
270situational context of activity so that an account of the interactional construction of
271meaning is possible, and does not pre-specify the interactional properties of the medium
272of interaction (e.g., synchronicity, availability of contributions and their production,
273persistence) but records these properties where they exist. Additionally, the approach is
274sufficiently formalized to enable computational support for analysis (including
275statistical and sequential analysis) and captures aspects of interaction in a manner that
276impartially informs research questions concerning how the sequential organization of
277activity leads to learning. The analytic framework we developed to meet these
278requirements draws on other interaction analysis methods, but uses a generalized
279concept of the unit of interaction and a data representation that is independent of any
280particular medium.
281The remainder of the paper first describes the conceptual, empirical, and representational
282foundations for our analytic framework before turning to examples of how it is constructed
283and used. Readers who prefer to begin with examples are invited to skip to those sections
284after reading the brief overview section below, but are warned that the examples are
285presented in terms of the framework they are intended to illustrate, so some prior
286introduction to this framework is a prerequisite.

287The uptake analysis framework

288The framework we developed assumes an analytic concern with uncovering or
289characterizing the organization of interaction in records of events. The framework offers
290conceptual foundations (units of action and interaction that are inclusive of a range of
291phenomena in distributed interaction); empirical foundations (observed events and
292relationships between them that evidence these phenomena); and representational
293foundations (an abstract transcript that captures this evidence in a unified analytic artifact
294and that supports multiple analytic practices). These foundations for analysis are presented
295in detail in this section, after a brief overview.

296Overview

297The framework is layered to make certain distinctions in analytic practice explicit. Given a
298data stream of events, analysts select certain events as being of significance for analysis
299(ei bottom of Fig. 1). Some of the events may be environmentally generated events, and
300some of the events are points at which actors in the interaction coordinate between personal
301and public realms. Next, the analyst identifies empirically grounded relationships between
302events that provide potential evidence for interaction. We call these relationships
303contingencies. Contingencies between events are represented in abstract transcripts that
304we call contingency graphs. Contingencies indicate how acts are manifestly related to each
305other and their environment. The analyst interprets sets or patterns of contingencies as
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306evidence for interaction. We propose the concept of uptake as an analytic way station in this
307process of interpretation. An assertion that there is uptake is an assertion that a participant
308has taken aspects of prior events as having relevance for ongoing activity. This assertion is
309made more concrete in ways specific to analytic traditions, interpreting uptake as
310recognizable activity (top of Fig. 1) in a manner that is grounded in specific actions and
311the relationships between them.
312To summarize, events and contingencies between them are the empirical foundations of
313the uptake analysis framework; graphs representing events as vertices and contingencies as
314edges are the representational foundation of this framework; and uptake between
315coordinations is the conceptual foundation for identifying interaction in this framework.
316In using the terms “coordination,” “contingency,” and “uptake,” we are collecting together
317and clarifying concepts about interaction that exist in current theory and analytic practice.
318These concepts are discussed in more detail below and are summarized in Table 1. We
319begin with discussion of conceptual foundations, as this motivates the empirical and
320representational foundations.

321Conceptual foundations: Inclusive units of action and interaction

322The conceptual foundations for the framework include concepts of action and interaction
323that generalize from existing analytic concepts to factor out assumptions about the setting.

Fig. 1 Analytic schema

t1.1 Table 1 Summary of framework levels and elements

t1.2 Empirical foundation

t1.3 Events Observed changes in the environment

t1.4 Contingencies Manifest relationships between events (see Table 2)

t1.5 Representational Foundation (abstract transcript)

t1.6 Vertices Represent, annotate and index to source data for events

t1.7 Hyperedges Represent, annotate and index to source data for contingencies

t1.8 Conceptual foundation

t1.9 Coordinations Acts in which an agent coordinates between personal and public realms

t1.10 Uptake Taking aspects of other coordinations as having certain relevance for ongoing activity

D.D. Suthers, et al.
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324Events, acts, and coordination The framework assumes that analysis begins with records of
325events that are characterized in terms of observable features such as changes in the
326environment and their temporal and spatial locales. These events may include acts—those
327events due to the agency of a specified, and for our purposes human, actor—and events
328involving nonhuman actants (Latour 2005).
329Many analyses of collaborative learning are particularly interested in acts by which
330participants coordinate between personal and public realms, including with each other. The
331term coordination is taken from the distributed cognition account of “coordination of [not
332necessarily symbolic] information-bearing structures” between personal and public realms
333(Hutchins 1995, p. 118). Whereas distributed cognition postulates bringing internal and
334external representations into alignment, the concept of coordination can also be understood
335as the intentionality that marks the divide between the agency of objects postulated by
336actor-network theory (Latour 2005, p. 62ff) and the object-oriented agency of human actors
337postulated by activity theory (Kaptelinin and Nardi 2006 section 9.2). However, the
338framework outlined in this paper does not require assumptions about the nature of the
339personal realm. We accept that some analytic traditions may identify relevant acts without
340postulating cognitive representations or inferring intentionality.
341Other literature uses the term contribution, but we desire a term that does not imply a
342conversational setting, and that is not biased toward production as the only kind of relevant
343action. For example, when a participant reads a message the personal realm is brought into
344coordination with inscriptions in the message, and when the participant writes a message,
345inscriptions are created in the public realm that are coordinated with the personal realm. In
346previous writings, we used the term media coordination, because all interaction is mediated
347by physical and cultural tools (Wertsch 1998), whether in ephemeral media such as thought,
348vocalizations, and gesture, or persistent media such as writing, diagrams, or electronic
349representations. The adjective media is dropped herein because it is redundant. The concept
350of coordination is relevant to Vygotsky’s developmental view of learning as the
351internalization of interpsychological functions (Vygotsky 1978), although these two ideas
352are at different time scales.
353Activity theory postulates three levels of activity: operations, actions, and activity
354(Kaptelinin and Nardi 2006, section 3.4). Coordinations correspond most closely to the
355level of action, lying between events generated at the operational level and the ongoing
356activity that the analyst seeks to understand. Because of this correspondence, we will use
357act as a synonym for coordination where it simplifies the prose. We use event when we
358wish to include environmentally generated events or refer to the data stream of events
359before specific events have been analytically selected as constituting coordinations.

360Uptake Interaction is fundamentally relational, so the most important unit of analysis is not
361isolated acts, but rather relationships between acts. The framework is based on a
362relationship that underlines the various conceptions of interaction current in the CSCL
363literature, but abstracts from assumptions about the format or setting of interaction.
364Although there are many conceptions of how learning is social or socially embedded, each
365of these forms of social learning is only possible when a participant takes something from
366prior participation further. We call this fundamental basis of interaction uptake (Suthers
3672006a, b). Uptake is the relationship present when a participant’s coordination takes aspects
368of prior or ongoing events as having relevance for an ongoing activity. For example, in a
369coherent conversation each contribution is interpretable as selecting some aspect of the
370foregoing conversation, and, by foregrounding that aspect in a given way, bridging to
371potential continuations of the conversation. Even more explicitly, a reply in a threaded
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372discussion demonstrates the author’s selection of a particular message as having certain
373relevance for participation. But uptake can also be subtler. The aspects taken as relevant can
374include not only expressions of information, but also attitudes and attentional orientation;
375and their manifestations may be ephemeral as in speech or persistent as in writing or digital
376inscriptions. Participants may take up others’ ways of talking about the matter at hand, or
377may mimic representational practices, such as notational conventions or the organization of
378objects in a workspace. Even the act of attending to another’s contribution is a form of
379uptake. Thus, the concept of uptake supports diverse definitions of “interaction,” including
380any association in which one actor’s coordination builds upon that of another actor or
381actant. Uptake can cross media and modalities. Uptake conceptualizes relationships
382between actions in a media-independent manner and potentially at multiple temporal or
383spatial scales.
384Uptake is transitive and transformative. Uptake is transitive in the grammatical sense that
385it takes an object: Uptake is always oriented toward the taken-up as its object. Uptake
386transforms that taken-up object by foregrounding and interpreting aspects of the object as
387relevant for ongoing activity:Objekt becomes predmet (Kaptelinin and Nardi 2006, chapter 6).
388Manifestations of this transformed object become available as the potential object of future
389uptake in any realm of participation in which it is available (as discussed further below).
390Therefore, uptake bridges to future activity. Uptake is transitive in the logical sense through
391the composition of interpretations (Blumer 1986; Suthers 2006b). If uptake u1 transforms o1
392into o2, and uptake u2 transforms o2 into o3, then o1 has been transformed into o3. More
393importantly, the act of uptake u2 is taking up not only o2, but also taking up the
394transformation o1—u1→o2 (the interpretation of o1 as o2), so u2 interprets the prior act of
395interpreting o1. This is another way of saying that meaning making is embedded in a
396successively expanding history.
397A participant can take up one’s own prior expressions as well as those of others.
398Therefore, uptake as a fundamental unit of analysis is applicable to the analysis of both
399intrasubjective and intersubjective processes of learning. An act of uptake is available as
400form of participation only within a realm of activity in which its transformed object is
401manifest (e.g., visible, audible, or otherwise available to perception). An individual working
402through ideas via mental processes and external notations has access to the transformed
403objects of his or her mental uptake as well as those of acts in the external media, but in the
404public realm only uptake that manifests via coordinations becomes available for further
405uptake.

406Related concepts Uptake is similar to several other relational units of interaction in the
407literature, as it is intended to identify a more general conception that underlies them all. The
408thematic connections of Resnick et al. (1993) are examples of uptake, although uptake
409allows for nonlinguistic forms of expression, and for other kinds of interpretative acts in
410addition to thematic or argumentative ones. Uptake has the advantage of being neutral with
411respect to the type of relationships possible (not being limited to a given set of thematic
412connections). An assertion that uptake is present postulates that a manifestation or trace of
413prior action has been taken as having significance for further activity, but abstracts away
414from what aspect of the prior action is brought forward, or what significance is attributed to
415it. This means that uptake is only a step on the way to identification of theory-specific
416relationships, for example, thematic connections or other interactional relationships
417captured by coding schemes (e.g., Berkowitz and Gibbs 1979; De Wever et al. 2006;
418Herring 2001; Rourke et al. 2001; Strijbos et al. 2006). However, unlike coding schemes,

D.D. Suthers, et al.

JrnlID 11412_ArtID 9081_Proof# 1 - 16/12/2009



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

419uptake meets the criterion of impartiality toward interpretations, so it can provide a
420common foundation for comparison of different interpretations.
421Uptake is related to but is broader than the concept of transactivity, which is often
422defined as reasoning that operates on the reasoning of one’s partner, or peers, or of oneself
423(Azmitia and Montgomery 1993; Kruger 1993; Teasley 1997; Weinberger and Fischer
4242006). The transactivity literature focuses on interactional contexts in which a contribution
425is explicitly directed toward an identified other, as in, for example, Berkowitz and Gibbs’
426(1979) coding categories for dyadic discussion. Uptake is broader in that it includes
427situations where an actor takes up a manifestation of another actor’s coordination without
428the necessity of either person knowing that the other exists, as happens in distributed
429asynchronous networks of actors in which resources are shared. Taking-up need not be
430directed at anyone. There are also differences in the analytic practices associated with each
431concept. Some analysts, such as Berkowitz and Gibbs (1979) and Azmitia and Montgomery
432(1993) who use their coding scheme, treat transactivity as a property of individual
433utterances that can be identified by observing the other-directedness of the utterance. Our
434proposal concerning uptake as an approach to analysis is relational. One cannot assert
435uptake as a property of an individual act: It is evidenced by contingencies between acts.
436However, the concepts of transactivity and uptake are compatible, with uptake being
437inclusive of transactive relationships.
438The relationship between uptake and the distinct conversation analytic concept of
439preferences is worth a brief note. At a given moment in a conversation, speakers may elect
440to continue the conversation in ways that differ in how they are aligned with the
441immediately prior contribution, some being more aligned or “preferred” (Atkinson and
442Heritage 1984; Schegloff and Sacks 1973). The meaning of the next utterance derives
443partially from how it meets these expectations. In a conversational setting, uptake either
444selects some aspect of the prior contribution as being relevant in a certain way, thereby
445making a commitment (whether more or less preferred) concerning alignment to prior
446contributions, or denies this relevance by taking up instead some other act as relevant. In
447either case, a new set of preferences is offered based on the aspect of the prior act selected
448as being relevant.

449Epistemological utility, not ontological claim Although we have described uptake as
450something that participants do, uptake is more accurately understood as an etic abstraction
451used in the analytic practices of identifying interactionally significant relationships between
452acts. From an emic perspective, participants do not engage in the abstract act of uptake;
453they engage in specific acts that they affirm (through subsequent acts) as the
454accomplishment of recognizable activity (Garfinkel 1967). Thus, from an ontological
455standpoint (concerning the nature of the actual phenomenon), uptake provides an
456inadequate account. However, from an epistemological standpoint (concerning the process
457by which analysts come to know the phenomenon), uptake and its empirical support,
458contingency, can be useful abstractions. For example, in a large data set, it may be useful to
459identify the possible loci of interaction before constructing an analytic account of the
460meaning of that interaction. As shown in Fig. 1, the analyst’s identification of uptake is a
461bridge between empirical contingencies and further analysis. Uptake analysis is a proto-
462analytic framework that must be completed by specific analytic methods motivated by a
463given research program. The contingency graph, described next, provides another resource
464for this analysis by offering potential instances of uptake and grounding analysis in
465empirical events. 466
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467Empirical and representational foundations: An abstract transcript

468Although we are ultimately interested in analyzing interaction in terms of sequences of
469uptake, one cannot jump immediately from raw data to uptake. Human action is deeply
470embedded in, and sensitive to, the environment and history of interaction in many
471ways, while only some of these contingent relationships enter into the realm of meaning
472in which participants are demonstrably oriented toward manifestations of prior activity
473as having relevance for ongoing participation. An analytic move is required to identify
474those observable contingencies that evidence uptake, and accountability in scientific
475practice requires that this analytic move be made explicit. This move is complicated
476when interaction is distributed across media, as no recording of a single medium
477contains all of the relevant data. Also, the complexity of potential evidence for uptake
478and our desire to scale up analysis suggests that computational support is required.
479Motivated by the need for a transcript representation that exposes interactional
480structures in diverse forms of mediated interaction, and for a formal structure that is
481amenable to computation, we developed the contingency graph. These empirical and
482representational foundations for the practices of uptake analysis are described in this
483section.

484Events and coordinations Uptake analysis begins with selection of a set of observed
485events. Events in general, rather than strictly coordinations, are included for two reasons:
486First, data collection and computationally supported analysis may begin before
487subsequent analysis identifies which events constitute coordinations; and second, actors’
488coordinations may take up environmentally generated events that must be included to
489understand those coordinations. Therefore, contingency graphs are defined over sets of
490events that include but need not be limited to coordinations. Examples of coordinations
491include utterances, electronic messages, and workspace edits. Later, we will see that
492coordinations may be specified at larger granularities, for example, a sequence of moves
493that creates a graphical arrangement of elements. Examples of events that are not
494coordinations include display updates driven by environmental sensors or by coordina-
495tions that took place on other devices. Events are represented in the formal contingency
496graph by vertices, and are depicted by rectangular nodes in the figures (e.g., e1 and e2 in
497Fig. 1 and e1…e4 in Fig. 2).

498Contingencies If a coordination is to be interpreted as taking up a prior coordination or
499event, then there must be some observable relationship between the two. Therefore, we

Fig. 2 Contingency graph
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500ground uptake analysis in empirical evidence by identifying contingencies between
501events. A contingency is an observed relationship between events evidencing how one
502event may have enabled or been influenced by other events. The concept of contingency
503recognizes that “there might exist many metaphysical shades between full causality and
504sheer inexistence” (Latour 2005, p. 72) between events that underlie the myriad of ways
505in which human action is situated in its environment and history. This situatedness is
506not bounded arbitrarily: Relevant contingencies include spatially and temporally local
507contingencies, but also can include non-local contingencies at successively larger
508granularities (Cole and Engeström 1993; Jones et al. 2006; Suthers and Medina 2010).
509Contingencies can be found in media-level, temporal, spatial, inscriptional, and
510semantic relationships between coordinations: These will be discussed in the next
511section. Ideally, contingencies are based on manifest rather than latent relationships
512between events (Rourke et al. 2001), and can be formally specified and mechanically
513recognized.

514Contingency graph The contingency graph is a directed acyclic graph consisting of events
515and the contingencies between them on which we may layer analytic interpretations.
516Formally, the contingency graph is a one-to-many directed hypergraph G = (V, E). The set
517of vertices V is the set of events selected for analysis, and the set of directed hyperedges E
518records all the prior events on which each event is directly contingent. E is a set of tuples
519(eu, {e1, ... en}), ei ∈ V, where event eu is contingent on events e1 through en. For example,
520the graph depicted in Fig. 2 consists of V = {e1, e2, e3, e4} and E = {(e3,{e1}), (e4,{e1,e2})}.
521A contingency graph respects the chronology of events: If the subscripts are time stamps
522under a partial ordering “>” then in each contingency (eu, {e1, ... en}), u > i, for i = 1, ... n.
523In a normalized contingency graph, none of {e1, ... en} are contingent on each other.
524(Formally, if (eu, {e1, ... en}) ∈ E, then for any two ex and ey in {e1, ... en}, there does not
525exist a tuple (ey,{... ex ...}) in E.) Normalization keeps the size of tuples to the minimum
526necessary and prevents redundant paths in the contingency graph, so that it is easier to
527find all the prior events upon which a given event is directly contingent. In many of
528our analyses, we partition V into {E0, C1 … Cm} according to which participant 1…m
529enacted the coordination, with E0 reserved for events by nonhuman actants. If some of
530{e1, ... en} were by a different participant than eu (i.e., one of e1 ... en is in a different
531partition than eu), then there are intersubjective contingencies, and the potential for
532collaboration exists.
533The contingency graph is an abstract transcript representation. By calling it “abstract,”
534we emphasize two things. First, all transcripts are abstractions of the events themselves, but
535contingency graphs abstract further from media-specific transcript formats to a common
536format. Second, the contingency graph is a formal object. It should not be confused with
537implementations. One need not construct the entire contingency graph for a given data set;
538indeed, it may not be possible to do so. The actual implementation may create data
539structures for whatever portions are sufficient and tractable for purposes at hand, or may
540merely trace out contingencies as needed. Similarly, the contingency graph is not a type of
541visualization: it is an abstract formal object that can be visualized in different ways. One
542need not visualize the graph as a node-and-link diagram as in Fig. 2: It may be queried and
543manipulated through other visualizations. The value of a contingency graph lies in making
544the structure of the data available in a media-independent manner while also indexing to
545that media.
546Contingencies provide evidence that uptake may exist, but do not automatically imply
547that there is uptake. Uptake is manifest in many ways evidenced in each instance by
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548multiple corroborating contingencies. Once uptake has been identified, it may be
549represented using an uptake graph, as in Suthers (2006a). An uptake graph is similar to a
550contingency graph, but may collect together multiple contingencies into a single uptake
551relation.

552Constructing contingency graphs

553This section describes the practical tasks involved in producing a contingency graph, and
554discusses these tasks in relation to existing analytic practices.

555Identifying events and coordinations

556Any analysis selects events that the analyst believes are relevant to the analytic question.
557For example, when an analyst transcribes an audio or videotape into Jeffersonian notation,
558the transcript is necessarily less rich than the original data: The analyst is selecting those
559events that she believes are relevant for further analysis. The act of “segmentation”
560common in some methods identifies units of the data representation (segments) that are
561suitable as meaningful units for the purpose of analysis. Similarly, an analyst may identify
562points of interest in a media recording or extract events from software log files.
563Identification of events believed to be relevant to the analytic question is also the first
564step of constructing a contingency graph. Doing so follows existing analytic practice, but
565makes this practice explicit by representing events as vertices in the contingency graph. The
566practice of explicitly identifying the events on which an analysis is based makes clear the
567specific events that were seen as relevant and helps expose assumptions. This helps
568multiple analysts collaboratively review their observations and interpretations. The
569contingency graph should allow the analyst to return to the event as accounted in the
570data record.
571As analysts of collaborative learning, we are particularly interested in participants’ acts
572that coordinate with the public realm. Some coordinations are easy to identify. When
573analyzing spoken conversation or discussion forums, utterances and messages (respectively)
574are obvious candidates for coordinations. The creation or editing of an object or inscriptions in a
575shared workspace is similarly easy to identify as coordination. We use the general term
576expressions to refer to coordinations that produce manifestations potentially available to
577others.
578Perceptions (e.g., seeing or hearing an expression) are another form of coordination
579between personal and public realms. Some analyses do not attempt explicit identification of
580perceptions, and may implicitly assume that every contribution is available to others at the
581time the contribution is produced or displayed. With asynchronous data, this assumption is
582clearly untenable. The applicability of this assumption to some forms of quasi-synchronous
583interaction can also be questioned. For example, we cannot assume that a chat message was
584perceived when it was produced. Active participants may have scrolled back into the chat
585history, or may be attending to an associated whiteboard. In our own work, maintaining the
586distinction between expression and perception has forced us to question our assumptions
587about which coordinations are available to others, and when. The contingency graph can
588include explicit specification of evidence for perceptions as another form of coordination.
589Perceptual coordinations are usually difficult to identify, but in some data, observable
590proxies such as opening a message are available. This is useful information for some
591analyses, such as tracing information sharing.
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592We have found it necessary to include events generated by nonhuman actors in our
593contingency graphs. For example, consider asynchronous computer-mediated interaction. A
594person engages in an expressive act that results in a change in the digital environment, such
595as the creation of an object in a workspace or the posting of a message. Later, another
596person connects to the workspace or discussion and the software system displays the object
597or message on that person’s device. The recipient’s perception of the new object or message
598is contingent upon and cannot occur prior to this automated display. This is an important
599distinction to make in order to track availability of inscriptions and avoid making
600unwarranted inferences. Vertices can be included for any event in the environment for
601which we claim analytic relevance.

602Identifying contingencies

603Another task in constructing a contingency graph is to identify and document the
604contingencies between events. Contingencies map out the sequential unfolding of the
605interaction. They are defined in terms of participating events (eu, {e1, ... en}), and evidence
606for the contingency.
607The term contingency is introduced to make an important distinction between the
608identification of evidence and the identification of interpretations in analytic practice. In
609many coding methods, the analyst simply asserts relationships between acts, for example,
610that a contribution is an “elaboration” on or “objection” to another. Measures of inter-rater
611reliability are used to establish that there is sufficient agreement among the judgments of
612those researchers participating in the analysis, but validity is not addressed because the
613basis for judgment is not made explicit and available to other researchers. We advocate for
614separating evidence from interpretation by first identifying manifest (as opposed to latent;
615Rourke et al. 2001) features of coordinations and ways in which they are contingent upon
616the environment and history, before interpreting these features and contingencies as
617evidence for interactional relationships of interest. This approach facilitates sharing and
618scrutiny of data and analyses, and provides a representational foundation for scaling up
619interaction analysis with machine support.
620In our own work, we have identified several contingency types, summarized in Table 2
621and discussed below along with examples. The most obvious contingencies are media
622dependencies, which are present when an action on a media object required the existence of

t2.1 Table 2 Summary of types of contingencies of ei on ej

t2.2 Media dependency ei operates on a media object or state of that object that was created or
modified by ej

t2.3 Temporal proximity ei took place soon after ej, where “soon” depends on the attentional properties
of the agent and persistency of the medium

t2.4 Spatial organization The locality of inscriptions operated on in ei is in a spatial context
created by ej

t2.5 Inscriptional similarity ei creates inscriptions with visual attributes similar to those of inscriptions
created by ej

t2.6 ei creates inscriptions with lexical strings identical to those in inscriptions
created by ej

t2.7 Semantic relatedness The meaning of inscriptions created by ei overlaps with that of inscriptions
created by ej
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623a previous action that created the object or left it in a prerequisite state. For example, a reply
624in a threaded discussion depends on the prior creation of the message being replied to, and
625modifying an element of a shared workspace depends on the most recent act that modified
626the element.
627Media dependencies can include perceptual coordinations. Consider a reply in a
628threaded discussion. The creation of the reply message is contingent on the author’s
629perception of the message being replied to (and possibly on other perceptions), which, in
630turn, is contingent on the creation of the message. The importance of this distinction will
631be exemplified later, in the example associated with Fig. 10, where the inclusion of
632contingencies involving read events gives a dramatically different impression of the
633coherence of a discussion. However, for many analytic purposes or when evidence for
634perceptual coordinations is not available, it is sufficient to work with contingencies
635between expressive acts.
636Temporal proximity is important in analysis of spoken dialogue and interaction in other
637media where contributions are expected to be relevant to ones immediately prior.
638Contingencies based on temporal proximity need not be limited to adjacent coordinations:
639They can extend in time based on the attentional and memory properties of the agents and
640on the persistence and availability of the media involved. For example, a comment by a
641conference delegate on the quality of posters at a conference may be contingent upon
642posters viewed during that poster session; and a message posted in a threaded discussion
643may be contingent on messages read previously during the login session. We might assume
644that temporal contingencies weaken with the passage of time, though it is difficult to
645quantify this degradation in a satisfying manner.
646Contingencies based on spatial organization may be useful for analysis of interaction in
647media where spatial placement can be manipulated by participants. For example,
648contingencies can be asserted when coordinative acts place objects in proximity in a two-
649dimensional workspace. If two items are placed near each other in a workspace, this may be
650an expression of relatedness. This example illustrates the more general principle of not
651confusing the representational vocabulary of a medium with the actions supported by the
652medium. For example, a medium that supports spatial positioning may be used to create
653groups even if no explicit grouping tool is provided (Dwyer and Suthers 2006; Shipman
654and McCall 1994). Membership in configurations such as lists may also be asserted as
655contingencies. Spatial contingencies merely record the fact that the placement of one object
656near the other depends on the prior placement: Whether we interpret this organization as
657some kind of grouping or categorization is the concern of further analysis.
658Inscriptional similarities are often used by actors to indicate relatedness (Dwyer and
659Suthers 2006). For example, inscriptions can have similar visual attributes (e.g., color or
660type face), shapes can be reused, or lexical strings can be repeated. Contingencies are
661asserted between coordinations based on inscriptional similarities to record the possibility
662that the reuse of the inscriptional feature indicates an influence of the prior coordinations
663{c1, ... cn} on cu.
664Semantic relatedness may be asserted when the semantic content of a coordination
665overlaps with that of another coordination in a manner that requires recognition of meaning
666(not merely inscriptional similarity). For example, if one inscription contains the phrase
667“environmental factors” and another contains the phrase “toxins in the environment,” and
668these are considered to be related ideas in the domain under discussion, then a semantic
669contingency might be asserted. However, these are latent rather than manifest relations, so
670care must be taken to not assert semantic contingencies that assume the uptake for which
671those contingencies are to serve as evidence.
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672In general, contingencies are more convincing as evidence for uptake if multiple
673contingencies are present offering convergent evidence (e.g., temporal proximity and
674lexical overlap between the same two coordinations). Therefore, it can be important to
675identify several types of contingencies and to interpret contingencies between coordinations
676collectively.

677Documenting other aspects of interaction

678A contingency graph is a partial transcription of an interaction. It may be necessary to
679annotate or augment the contingency graph formalism to contextualize the interaction. For
680example, the reply structure of a threaded discussion is an important resource for
681understanding the participants’ view of the medium, and so may be included as annotations
682on contingency graphs. In asynchronous settings, it can be important to document
683workspace updates by which participants received new data from their partner. These
684updates can be represented in the contingency graph as vertices for events in which the
685technological environment is the actant.

686Role of the contingency graph in analysis

687The contingency graph was developed to support diverse studies in our laboratory,
688including multiple methods of analysis applied to a single source of data, as well as to help
689integrate our thinking about interaction across several sources of data. The contingency
690graph can be used for analysis in various ways, and methods cannot be described without
691giving the context in which they were applied. Therefore, detailed explication of how the
692contingency graph is used in analysis is taken up in the examples starting in the next
693section. We conclude this section with a few general observations concerning analysis of
694contingencies and uptake.

695Iteration and densification Production of the contingency graph can be an iterative process
696of densification in which multiple passes through the data identify additional elements and
697provide new insights into the interaction (e.g., as in Medina and Suthers 2009). New events
698and contingencies can be continually added to the graph. As the recorded data becomes
699richer, warranted results also scale up. Grounded theory (Glaser and Strauss 1967) offers
700tools for iterative analysis, including motivated addition of data through “theoretical
701sampling.” However, the graph can never be considered complete, except with regard to
702particular representational elements (e.g., it is possible to claim that every discussion
703posting has been recorded). Therefore, as in any analysis, one must be cautious about
704asserting that a practice or pattern never occurs.

705Directions of analysis Analyses may take different directions from what is given to what is
706discovered. A typical distributed cognition analysis starts by identifying a system’s function
707(e.g., collaboratively steering a ship) and explains how that function is carried out by
708tracing the propagation of information through the system and identifying transformations
709of that information that take place at points of coordination between the participants and
710external representations. In settings fundamentally concerned with the creation of new
711knowledge, it is more appropriate to work bottom-up, starting with the identification of
712visible acts of coordination and the contingencies between them, and then seeking to
713recognize what is accomplished through the interaction. A hybrid approach is to start with a
714recognized learning accomplishment, and then to work backwards in time to reconstruct an
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715account of how this accomplishment came about. An example will be offered in the next
716section.
717In summary, a contingency graph is an abstract transcript that indexes to the original data
718but indicates the aspects of that data that are chosen for analysis. It is only a starting point
719for analysis. Collections of contingencies evidence uptake; and sequences of uptakes are
720interpreted based on the theoretical phenomena of interest, such as argumentation,
721knowledge construction, or intersubjective meaning making. In practice, the process may
722iterate between identification of coordinations, contingencies, and uptake; and may be
723driven by specific analytic goals or may be more exploratory in nature. Because the
724explication of structure in the data and the analytic interpretation are separated, the
725contingency graph can serve as a basis for comparison and integration of multiple
726interpretations. Possible approaches to interpretation are diverse: Some examples are given
727in the rest of the paper.

728Detailed example of the contingency graph representation

729In this section, we provide a simple yet detailed example of how a contingency graph is
730derived from data, and how that contingency graph can be used for tracing out three
731fundamental interaction patterns (information sharing, information integration, and round
732trips). The purpose of this section is to help the reader understand the contingency graph as
733an abstract data representation, to illustrate how to trace out intersubjective meaning
734making in the graph representation, and to introduce the visual notations we use to display
735graphs. Our claim that it is a useful analytic representation will also be addressed with
736additional examples in the next section. The example in this section and two examples in
737the next section are based on data derived from dyads interacting in a laboratory setting.
738Therefore, we begin by briefly explaining the source of the data.

739Asynchronous dyadic interaction in a laboratory setting

740The data is derived from an experimental study of asynchronously communicating dyads,
741conducted to test the claim that conceptual representations support collaborative knowledge
742construction in online learning more effectively than threaded discussions (Suthers 2001;
743Suthers et al. 2008). Participants interacted via computers using evidence mapping and
744threaded discussion tools in a shared workspace to identify the cause of a disease on Guam
745(Fig. 3). Three conditions were tested: threaded discussion only; threaded discussion side
746by side with evidence map; and evidence map with embedded notes (the latter is shown in
747Fig. 3). Information was distributed across participants in a hidden profile (Stasser and
748Stewart 1992) such that information sharing was necessary to refute weak hypotheses and
749construct a more complex hypothesis. The protocol for propagating updates between
750workspaces was asynchronous. Process data included server logs and video capture of the
751screens. Outcome data included individual essays that participants wrote at the end of the
752session, and a multiple-choice test for both recall and integration of information that
753participants took a week later. Results reported elsewhere ( Q6Suthers et al. 2007d, 2008)
754showed that users of conceptual representations (the two conditions with evidence maps)
755created more hypotheses earlier in the experimental sessions and elaborated on hypotheses
756more than users of threaded discussions. Participants using the evidence map with
757embedded notes were more likely to converge on the same conclusion and scored higher on
758posttest questions that required integration of information distributed across dyads. One
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759possible explanation for these convergence and integration results is that the higher
760performing group shared more information, but this explanation was not supported by
761analysis of essay contents and posttest questions designed to test information sharing.
762Therefore, we undertook further analyses to explore information sharing during the
763session.

764Motivation for the analysis

765Some of our analyses sought to identify whether and how the construction of the essays
766was accountable to the prior session, and especially whether interaction between
767participants influenced the essays. For each session analyzed, we began with the participants’
768essays and traced contingencies back into the session (constructing the contingency graph as we
769went) to identify uptake trajectories that may have influenced the essays. Some sessions were
770chosen for analysis because there was convergence in the content of the essays and we wanted
771to identify how this convergence was achieved interactionally. Other sessions were chosen to
772examine divergent conclusions. In both cases, we wanted to relate significant instances of
773intersubjective uptake or failure thereof to how participants used the media resources. The first
774example presented below is of the former type, where participants converged in their individual
775essays.

776Elements of a contingency graph

777In this section, we illustrate how elements of a contingency graph are related to interaction
778data, drawing on an analysis we conducted for one session. Both participants (referred to as
779P1 and P2) mentioned “duration of exposure” to environmental factors or toxins in their
780essays, and the analysis sought to identify how this convergence in the individually written
781essays was accomplished. We constructed a contingency graph by working backwards from
782the events in which each participant wrote this explanation to identify the contingencies of
783these writings on prior events. We constructed the contingency graph in OmniGraffle™ and
784Microsoft Visio™ based on inspection of software log files (imported into Microsoft
785Excel™) and inspection of video of participants’ screens (recorded in Morae™). The

Fig. 3 Interacting through graphical workspaces
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786contingency graph we constructed focused only on the interaction relevant to the
787aforementioned essay writing events, and includes about 180 events and 220 contingencies
788between them. A visualization of a small portion of this graph is shown in Fig. 4. The
789rounded boxes with text in them summarize the logged events on which the presented
790portion of the graph is based. These are included solely as expository devices and are not
791part of the contingency graph, although graph elements should always index back to their
792data source. Vertices representing P1’s coordinations (the logged events) are shown as black
793rectangles above the timeline, and vertices representing P2’s coordinations are shown as
794white rectangles below the timeline. Each vertex was assigned an identifier as we
795constructed the graph, vertices for perceptual coordinations being marked with the letter
796“p.” Time flows left to right, but this being an asynchronous setting we cannot assume that
797a contribution is available as soon as it is created, nor can we assume that the clocks on
798each client were synchronized (inspection of the figure will reveal that they were not). The
799vertical lines in each participant’s half demarcate when the local client updated that
800participant’s workspace to display new work by the partner. (These events can be
801represented as vertices in the contingency graph formalism, but for simplicity we show only
802vertices for human actors.)
803Arrows between the boxes visualize contingencies. Dotted arrows represent intra-
804subjective and solid arrows represent intersubjective contingencies. For example,
805contingency (20p, {20}), a media dependency, is present because P1’s coordination that
806took place at 1:50:23, represented by vertex 20p, accessed the media object created by P2 in
807the coordination that took place at 1:41:40, represented by vertex 20. Although the
808preceding sentence is technically accurate, it is also tedious. For brevity, we will use the
809numeric identifier as shorthand to refer to the coordination, any object or inscription that
810may have resulted from the coordination, or the vertex that represents that coordination. For
811example, we can state simply that 20p accessed 20’s media object, so a media dependency

Fig. 4 Fragment of a contingency graph and the events from which it was derived

D.D. Suthers, et al.

JrnlID 11412_ArtID 9081_Proof# 1 - 16/12/2009



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

812is present. However, we will make the distinctions more explicit when necessary for the
813point at hand.
814This graph illustrates how contingencies can be evidenced by the editing of media
815objects or by lexical similarity, and can be further evidenced by temporal and spatial
816proximity. For example, at 1:52:06, P1 added a comment (10) to the same note object that
817she had just read at 1:50:23 (20p). (A note object can contain a sequence of comments from
818both participants.) Because the coordination 10 could not have taken place unless this
819media object existed, we have a media dependency of 10 on 20p. The same example
820illustrates lexical and temporal contingencies. Coordination 10 uses the phrase “environ-
821mental factors,” which is present in the note accessed at 20p, providing an inscriptional
822contingency of 10 on 20p. (Coordination 10 is also contingent on 13 by lexical overlap of
823“duration of exposure.”) Finally, 10 takes place less than 2 min after 20p, providing
824circumstantial evidence by temporal proximity that 10 is contingent on 20p.1 Therefore, the
825arrow from 10 to 20p in Fig. 4 visualizes a composite of three contingencies that we take as
826evidence for uptake.

827Interpretation of the contingency graph

828Next we walk through the graph of Fig. 4 to trace out the interaction it represents and
829illustrate its analytic use. Because Fig. 4 shows only those composite contingencies we
830have selected as evidence for uptake, it is also an uptake graph. We show how the uptake
831structure can be interpreted in terms of three phenomena: information sharing, integration
832of information from multiple sources, and intersubjective round trips.

833Sharing information At 1:41:40, P2 creates a note summarizing environmental factors as
834disease causes (20). This note is not yet visible to P1. Around then in clock time but
835asynchronously from the participants’ perspectives, P1 creates a data object (13) concerning
836the minimum duration of exposure to the Guam environment needed to acquire the disease.
837Subsequently, a workspace refresh (1:50:03) makes note 20 available to P1. P1 opens this
838note shortly after (20p). The contingency (20p, {20}) could be interpreted as an
839information-sharing event, as P2 has expressed some information in inscriptions and P1
840has accessed these inscriptions. We emphasize that this is an analytic interpretation: There
841is no requirement that the contingency graph be interpreted in terms of flow of information
842or shared mental states.

843Integrating information Later, P1 adds a comment to the note object (10) that is contingent
844on 13 and 20p, as discussed in the previous section. We interpret these combined
845contingencies (10, {13, 20p}) as evidence for uptake in which 10 integrated two lines of
846evidence about this disease from 13 (“duration of exposure”) and 20p (“environmental
847factors”). Taking the transitive closure of contingencies that pass through perceptual
848coordinations, the contingencies on expressive events are (10, {13, 20}). Therefore 10
849integrates information that originated from each participant P1 (13) and P2 (20) in the
850hidden profile design.

1 The mapping of temporal proximity to evidential strength is relative to the medium and activity. Here, a
person is deliberating over various materials while her partner works asynchronously. A few minutes
deliberation is plausible.
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851A round trip Let us now examine how P1’s integration (10) became available to P2.
852Sometime after 13 was expressed, a refresh (1:45:33)2 made the corresponding object
853available to P2, who opened it shortly after (13p). Subsequently (after P2 does other work
854not shown), another refresh (1:54:29) makes 10 available to P2, soon opened (10p).
855Because P2 has considered both 13p (“duration of exposure”) and P1’s indication that
856duration of exposure is relevant to environmental factors (10p), we view P2’s inclusion of
857these concepts as “the duration of exposure to toxins” in her essay (e3) to be an uptake of
858both of these conceptions. The round trip from 20 through 20p, 10 and back to 10p, namely
859the path ((20p, {20}), (10, {13, 20p}), (10p, {10})}), represents intersubjective meaning
860making on the smallest possible scale beyond one-way information sharing ( Q7Suthers et al.
8612007c). In this case, information provided by P2 (20) is combined with information
862available only to P1 (13) and reflected back to P2. We cannot rule out that e3 is uptake of
863only 20 and 13p and, hence, based on a one-way transfer of information, but nor can we
864rule out that P1’s endorsement of the importance of the idea in 10, taken up in 10p, also
865influenced P2’s inclusion of this idea in the essay. It is plausible that both were a factor.

866Necessity of tracking availability and access events

867Awareness of representational elements is not symmetrical in asynchronous media. At one
868point in the session just described, the objects created by coordinations 13 and 20 both
869existed, but neither was available to the other participant. A contingency graph can record
870when the media manipulations of other participants become available to a given participant,
871but analysis cannot simply rely on the appearance of a media object in a workspace. Some
872analyses will require evidence that a contribution was actually accessed, which is why we
873need vertices representing perceptual coordinations such as 20p. Notations developed for
874face-to-face and synchronous communication often assume a single context and immediate
875availability of contributions. These are reasonable assumptions for those media but
876significantly limit those notations’ applicability to asynchronous media.

877Analytic use of the contingency graph

878In this section, we provide examples of several analyses we conducted with the aid of the
879contingency graph formalism, to provide evidence for our assertion that the contingency
880graph can productively support multiple types of analyses of distributed interaction. Our
881evidence is that the contingency graph has served in this way in our own laboratory, where
882we have undertaken both discovery-oriented analysis (ideographic research) and quantita-
883tive hypothesis testing (nomothetic research) from the same source of data, the previously
884described dyads interacting in a laboratory setting. We also conclude with an application of
885the contingency graph to a different source of data, server logs of asynchronous threaded
886discussions in an online course, as an illustration of generality across media.

2 It may seem impossible for an object created at 1:45:49 to become available at 1:45:33. We remind the
reader that the computer clocks were not synchronized. The analogy of a time zone may be useful. In real
time, 1:45:33 in P2’s “time zone” is after 1:45:49 in P1’s “time zone.” It would have been easy to hide this
from readers by changing the time stamps in the figure. However, we decided to leave the discrepancy in to
emphasize the point that even if the clocks were synchronized it would be misleading to compare times
across the upper and lower half of the figure due to the asynchronous updating, and more importantly, that
the contingency graph can handle partially specified orderings of events from distinct timelines.
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887Discovery of an interactional pattern

888Figure 5 presents a contingency graph derived from a different dyad in the study described
889previously. This dyad was using a combination of evidence maps and threaded discussions.
890The analysis was done to understand how these two participants used the available media
891resources to converge on the conclusion that aluminum in the environment is probably not
892the cause of the disease under consideration. We were also considering whether
893convergence is achieved by information sharing alone or whether interactional round trips
894are required ( Q8Suthers et al. 2007d). Construction of the contingency graph allowed us to
895discover an interesting interactional pattern that goes beyond simple round trips. The
896information that “aluminum is the third most abundant element” and that this contradicts
897aluminum as a causal agent were successfully shared via coordinations 27, 27p, 20, 19 and
89820p (all of which took place in the evidence map). Specifically, the contingency (27p, {27})
899is evidence that P2 is aware of P1’s hypothesis that aluminum is the cause; and the
900composite contingency (20p, {20, 19}) is evidence that P1 is aware that P2 has expressed
901the idea that the abundance of aluminum (20) is evidence against this hypothesis (19). From
902an information-sharing perspective, these two contingencies are sufficient to explain the
903fact that both the participants mentioned the abundance of aluminum as evidence against
904aluminum as a disease factor. From an intersubjective perspective, the inclusion of the
905contingency (19, {27p, 20}) makes this sequence a round trip in which P1’s expression (27)
906has been taken up (27p), transformed (20, 19), and reflected back to P1 (20p).
907The contingency graph exposed a second round trip over 20 min later in the session
908(7, 7p, 8, 8p). This round trip made explicit and confirmed the interpretation implied by the
909first round trip. By exposing this dual round trip structure, the uptake analysis enabled us to
910hypothesize an interactional pattern in which information is first shared in one round trip,
911and then agreement on joint interpretation of this information is accomplished in a second
912round trip. We call these W patterns after their visual appearance in diagrams like Fig. 5.
913The analysis also helped us discover that participants accomplished the confirmation round

Fig. 5 Partial contingency graph of a dyad collaborating with multiple media. Rectangles, octagons, and
ellipses represent coordinations with an evidence map, a threaded discussion, and a word processing tool,
respectively
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914trip in a different interactional medium, the threaded discussion (the coordinations
915represented by octagons in the figure). The first round trip is reasoning about evidence in
916the domain, easily expressible in the evidence map notation. The second round trip is
917reflecting on the status of the domain evidence and how it should be interpreted. This
918reflection is not as easily expressed in the evidence map, and indeed is a second-order act of
919stepping outside of that map and interpreting it, so the use of natural language in the
920threaded discussion seems appropriate. Similar distribution of domain and second-order
921conversation across evidence maps and synchronous chat has been observed in another
922study (Suthers 2006a).

923Quantitative queries for hypothesis testing

924This example illustrates how contingency graphs can be used to support quantitative
925hypothesis testing. A study discussed previously found that dyads using evidence maps
926with embedded notes came to agreement on the disease hypothesis far more than dyads
927using other software configurations, even though the evidence map users discussed more
928hypotheses (Suthers et al. 2008). This group also had higher scores on posttest questions
929requiring integration of information. Given the central role of information sharing in
930theorizing about collaboration (e.g., Bromme et al. 2005; Clark and Brennan 1991;
931Haythornthwaite 1999; Pfister 2005), one might expect that this group shared more
932information. We compared the use of shared information in essays, and also compared
933performance on posttest questions that tested for shared information, but neither analysis
934supported the assertion that there were differences in information sharing. These being
935“outcomes” data, we decided to see whether there was evidence for differential information
936sharing in the sessions themselves. We found all patterns of contingencies in which
937information uniquely given to one person was expressed in the shared medium and then
938accessed by the other person (Fig. 6a). Our results showed that, measured this way,
939information sharing in the session was uncorrelated with the convergence results (see also
940Fischer and Mandl 2005). Given the apparent importance of round trips observed in the
941previous analysis, we decided to similarly trace out round trips in the experimental sessions.
942We found all patterns of contingencies that began with the pattern of the previous analysis,
943but was further extended in that the recipient then re-expressed the information (possibly
944transformed or elaborated) in a media object that was then accessed by the originating
945participant (Fig. 6b). Results showed a possible difference (p=0.065) between the
946experimental groups on round trips ( Q9Suthers et al. 2007d). However, a later analysis with
947post hoc groups formed on presence or absence of convergence did not support either
948information sharing or round trips as explanations, which presents a problem for the
949dominant information sharing theory. The negative result on round trips may be due to our

Fig. 6 Information sharing and round-trip patterns
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950failure to track round trips based on hypotheses: see Suthers et al. (2007d) for an
951explanation.
952The point of this discussion is that contingency graphs can also support quantitative
953hypothesis testing. In particular, basing quantitative analyses on theoretically interesting
954patterns of contingencies as the fundamental units to be counted can make quantitative
955studies more relevant to CSCL than studies based on attributes of isolated events or
956outcome measures alone. A secondary point is that it is not necessary to construct a full
957contingency graph in advance: In this study, the patterns of Fig. 6 were traced out and
958counted algorithmically in coded log files without constructing an explicit graph
959representation.

960Uncovering representational practices through multi-level analysis

961The next example analysis illustrates four related points. First, automated generation of
962contingency graphs is possible and can be useful. Second, analysis often uses the
963contingency graph in conjunction with the source data, and, indeed, part of the value of the
964graph is to select relevant portions of the source data for further analysis. Third, one can
965aggregate coordinations and contingencies to discover patterns at a coarser granularity.
966Fourth, analysis of a contingency graph can lead to insights into nonverbal behavior.
967One session from the “evidence map plus threaded discussion” condition was chosen for
968analysis because participants appeared to converge on the role of cycad seeds in the disease,
969but not on the role of drinking water. This analysis sought to determine why this might be
970the case.

971Contingency graph construction Because manual construction of the previous contingency
972graphs was tedious, we used computational support. In this analysis, the contingency graph
973was generated through mixed human-computer interaction. We first generated a
974contingency graph based on media dependencies, by linking sequential chains of events
975that referenced the same media object (see Medina and Suthers 2008, 2009 for details). We
976wrote a collection of scripts packaged into a small application—the Uptake Graph Utility—
977that controls interaction between a MySQL database and Omnigraffle™ (a commercial
978application for diagramming and graphing) to visualize the contingency graph. See Fig. 7
979for a portion of the initial visualization of the data under discussion. The Uptake Graph
980Utility enables one to selectively filter elements of the graph from view, generate
981subgraphs, and isolate structural or temporal properties of the data. For example, in this
982analysis, we visualized the subgraph manipulating media objects that contained the strings
983“drinking water” or “aluminum.”

984Revealing a nonverbal interaction pattern A striking feature of the contingency graph was
985that one participant appeared to be primarily contributing information by creating graph
986objects, while the other participated primarily by manipulating graph objects, particularly
987by moving them around. Figure 8 shows this pattern in an annotated portion of the

Fig. 7 A 20-minute portion of an automatically constructed contingency graph
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988contingency graph. P2 could be moving nodes around in order to see them, or to get them
989out of the way: Dragging and dropping of graphical objects for these reasons is frequent.
990However, in this case, the periodic pattern and density of P2’s series of movements
991suggested more deliberate activity. This led us to examine the video record from P2’s
992workstation. We found that P2 was performing a series of graph space reconfigurations to
993organize information previously shared during the session. After P1 contributed new
994information, P2 moved nodes to create spatially distinct groups, each of which contained
995conceptually related items. In addition to this spatial organization, P2 created nodes
996containing brief categorical labels such as “CYCAD INFO” and linked these nodes to
997group members to further clarify their inclusion in the group.
998Alternation between inspection of the contingency graph and viewing relevant video
999from both workstations revealed that P1 took up these practices from P2, as detailed in
1000Medina and Suthers (2008, 2009). This led us to identify uptake of information and of
1001representational practices at a coarser granularity, as shown in Fig. 9. Beginning at the left,
1002P1 shared information containing a reference to aluminum in water as a contaminant in the
1003first two episodes (E1 & E3). The third information-sharing event by P1 contains two
1004references that correlate aluminum and neurological symptoms of the disease (E6). P2’s
1005uptake of this information is seen as episodes of graph space manipulations (E2, E4, E5 &
1006E7–10). Intersubjective uptake within this sequence of activity is initiated in P2’s visual
1007transformation of the shared information, and is followed by a series of intrasubjective
1008uptakes as P2 adjusts the representations. As shown in the far right of the diagram,
1009intersubjective interaction resumes when P1 takes up P2’s graphical organization in E11,
1010and in the concluding work episode.

1011Analytic roles of the contingency graph In this analysis, the contingency graph exposed
1012patterns of interaction and provided direct pointers (via time stamps) to relevant locations in
1013the video record, enabling us to conduct coordinated analysis of the two separate video
1014streams that identified the emergence of a shared representational practice. The contingency
1015graph supported flexible transitions between identification of macro uptake patterns and
1016microanalysis of a series of graphical manipulations during this analysis. Understanding the
1017development of representational practices requires macro and micro understandings

Fig. 8 Information sharing by P1 followed by systematic graph manipulations by P2

Fig. 9 High level view of uptake over the entire session
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1018(Suthers and Medina 2010), and the contingency graph mediates between the two. As
1019Lemke states,

10201021“… we always need to look at at least one organizational level below the level we are
1022most interested in (to understand the affordances of its constituents) and also one
1023level above (to understand the enabling environmental stabilities).” (2001, p. 18)
1024

1025We examined the video record to see how P1 used the affordances of the graph
1026representation to organize information, and we examined uptake at a coarser level over time
1027to see how the persistence of inscriptions in this environment enabled P2 to notice and pick
1028up these practices.

1029Asynchronous online discussion

1030In order to explore how the contingency graph framework can be adopted to conventional
1031online learning settings, we analyzed server logs of asynchronous threaded discussions in
1032an online graduate course on collaborative technologies. The software (discourse.ics.hawaii.
1033edu, developed in our laboratory) records message-opening events as well as message
1034postings, but there is no other record of participants’ manipulations of the screen. Figure 10
1035diagrams a fragment of the contingency graph we constructed in one analysis. After reading

Fig. 10 Fragment of contingency graph for an online discussion. Inset lower left shows threading structure
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1036a paper on socio-constructivist, sociocultural, and shared cognition theories of collaborative
1037learning (Dillenbourg et al. 1996), a student facilitator suggested that students write “grant
1038proposals” to evaluate learning in the course itself, and discuss how their choice of theory
1039would affect how they approach the evaluation. The episode we analyzed took place over
1040several days, demarcated in Fig. 10 by vertical lines for midnight of each day. The reply
1041structure of the threaded discussion is shown in the inset, lower left of Fig. 10. The episode
1042of Fig. 10 was chosen because it illustrates conceptual integration across two subthreads,
1043and, hence, the analytic value of contingencies that are independent of media structure.
1044Stepping through our interpretation of the graph, in 1 the instructor (P2) has posted a
1045comment concerning a prior contribution that used the phrase “socio-cultural” but seemed
1046to express a socio-cognitive approach. Unfortunately, “socio-cognitive” had not been
1047discussed in the paper, and the student (P1) reading this message (1p) is confused by the
1048different name. She raises questions about the distinction in two separate replies, 2 and 3.
1049Between 2 and 3, she has read a sequence of messages (X1…Xn): P1 appeared to be
1050searching for more information on the topic. The next day, P2 returns, sees 2 (2p), replies
1051with an explanation of “socio-cultural” in 4, and then starts down the other subthread.
1052Seeing 3 (3p) the source of the confusion becomes apparent and P2 replies with a
1053terminological clarification (5). Later that day, P1 reads both threads (4p, 5p) but replies
1054only to the second with a “thank you” (6). On the third day, P3 reads messages in another
1055discussion (Y1…Ym), enters this discussion and reads both threads (2p, 4p, 3p, 5p, 6p), and
1056then replies to the last “thank you” message with a comment (7) about the confusion that
1057related back to the other discussion: an integrative move that was consistent with her
1058assigned role as student facilitator for this assignment.
1059Participants’ reading and posting strategies as well as the default display state and no-
1060edit policy of the medium affect whether conversations are split up or reintegrated. By
1061posting two separate replies (rather than editing her first reply—not allowed—or
1062responding to that reply), P1 opens up the possibility of a divergent discussion. By
1063following a strategy of reading and replying to each message one at a time, P2 continues the
1064split that P1 has started. The discussion tool also allows one to scroll through a single
1065display of all messages that one has opened in a discussion forum. By following a strategy
1066of reading all messages before replying, P3 brings these separate subthreads together.
1067However, the reply structure imposed by the discussion tool does not allow this
1068convergence to be expressed in the medium: P3 must reply to one of the messages, so
1069she replies to the last one she read.
1070Many analyses of online discussion consider only threading structure, which provides an
1071oversimplified record of interaction. If the analysis examined threading structure alone
1072(inset of Fig. 10), it would not be clear why P1 posted two separate questions (2 and 3), and
1073P3’s message (7) would seem odd as a reply to the “thank you,” as it is referring to “several
1074of our grant proposals.” But the contingency graph captures aspects of the coherence of the
1075mediated interaction that are not apparent in the threaded reply structure. The contingency
1076graph reveals that P1’s second posting was motivated by an attempt (X1…Xn) to find the
1077new phrase (“socio-cognitive”), and that P3 had read through a discussion of grant
1078proposals (Y1…Ym) about an hour before posting 2.3 Although some of this coherence can
1079be recovered through analysis of quoting practices (Barcellini et al. 2005), our analysis goes
1080further to include (for example) lexical and temporal evidence for coherence, evidence that

3 In discourse, a list of who has read each message at what time is available to participants on demand in a
separate display, but this analysis suggests that other awareness visualizations may be useful, such as
summaries of activity prior to a posting.
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1081can also be partially automated. This ability to identify trajectories of participation that are
1082independent of yet influenced by media structures is an important strength of the method.

1083Summary and discussion

1084The relationship between interaction and learning is a central concern of the learning
1085sciences. Computer-supported collaborative learning itself has been defined as “a field
1086centrally concerned with meaning and practices of meaning making in the context of joint
1087activity and the ways in which these practices are mediated through designed artifacts”
1088(Koschmann 2002). Our research focuses this agenda on how technology affordances
1089(designed or otherwise) influence and are appropriated by participants’ intersubjective
1090meaning making (Suthers 2006b). We take the concept of “interaction” broadly, to include
1091not only co-present interaction that is tightly coordinated to maintain a joint conception of a
1092problem (Teasley and Roschelle 1993), but also distributed asynchronous interaction in
1093online communities (Barab et al. 2004; Renninger and Shumar 2002), and even indirect
1094ways in which individuals benefit from the presence of others in “networked learning”
1095(Jones et al. 2006). In a world in which connectivity is ubiquitous and the distinction
1096between “online” and “offline” is no longer defensible, these forms of interaction will
1097become increasingly mixed in any learner’s experience, and the boundary between them
1098will become less clear. Therefore, researchers studying learning through interaction are well
1099advised to work with a fundamental conception of interaction that underlies its various
1100forms.
1101Our own research has included and continues to include instances of all of these forms
1102of interaction, including dyads interacting face-to-face, synchronously via computer and
1103paper media, and asynchronously; and larger numbers of participants interacting directly
1104and indirectly in online sociotechnical systems. The framework reported in this paper is the
1105result of our effort to provide theoretical coherence to our research while also addressing
1106practical problems in the study of distributed interaction. These two objectives are related.
1107We found that some theoretical accounts were expressed in terms derived from the
1108properties of media they studied, while we wanted to use a single conceptual framework.
1109The practical problems began when we tried to apply methods of face-to-face interaction
1110analysis to distributed interaction. The interaction was distributed across actors, media, and
1111time, and included asynchronous as well as synchronous interaction, making traditional
1112transcript representations and analytic concepts unsuitable. Also, we needed to integrate
1113data recorded in diverse formats. Therefore, we realized it would be valuable to collect the
1114various records of interaction into a single analytic artifact that does not assume a particular
1115interactional context and that can be inspected for evidence of distributed interaction and
1116phenomena at multiple granularities. Due to eclectic work in our laboratory, we needed to
1117support multiple methods of analysis. In particular, we wanted to apply sequential analysis
1118of interaction to expose the methods by which participants engage in intersubjective
1119meaning making, apply computational support to scale sequential analysis up to larger data
1120sets, and also support statistical testing of hypotheses concerning patterns of interaction. A
1121further objective we set for scientific accountability was to separate the empirical evidence
1122and the claims being made while also identifying the relationships between the two.
1123Over time, our efforts to address these problems and objectives resulted in the
1124framework for analysis reported in this paper. The empirical foundation of the framework is
1125the identification of events and contingencies between them. The representational
1126foundation of the framework is an abstract transcript, the contingency graph, which
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1127represents events as vertices and contingencies as edges. The conceptual foundation of the
1128framework in terms of which interaction is identified is uptake between coordinations. We
1129have applied this framework to data derived from synchronous and asynchronous
1130interaction of dyads and small groups, as exemplified in this paper and other publications,
1131and have found it helpful in unifying diverse research in our own laboratory.
1132While a commitment to contingencies between events is inseparable from this
1133framework, the contingency graph may be adopted independently of the concepts of
1134coordinations and uptake. The contingency graph provides a single representation of data
1135that applies to diverse contexts and forms of interaction, supports computational tools for
1136scaling up sequential analysis, enables quantitative methods to operate on interactional
1137patterns, and separates empirical grounds from interpretation. The contingency graph is
1138media-agnostic. It records the multiple coordinations that took place in an interaction and
1139maps out their interdependencies. However, it is not media ignorant; it can bring in
1140medium-specific information and index to media recordings, so the relationship between
1141meaning making and the media can be examined.
1142We find the concept of uptake useful in interpreting contingency graphs. An uptake
1143analysis makes commitments to intentional agency by identifying coordinations, and then
1144uses corroborating contingencies to identify ways in which coordinations demonstrably
1145take manifestations of prior participation as relevant to ongoing participation. Abstracting a
1146contingency graph to an uptake graph enables one to trace out individual trajectories of
1147participation, to examine how these trajectories affect each other; and to step back and
1148analyze the composite web of interpretations that constitutes “distributed cognition”
1149(Hutchins 1995) or “group cognition” (Stahl 2006). Furthermore, we find the concept of
1150uptake to be useful for questioning assumptions concerning what constitutes interaction and
1151thinking about interaction in the diverse forms it takes.

1152Related work

1153The uptake analysis framework has strong affinities with the Constructing Networks of
1154Activity Relevant Episodes (CN-ARE) approach (Barab et al. 2001), although we offer a
1155framework rather than one method, and there are differences in granularity of analysis. As
1156the name implies, Activity Relevant Episodes (ARE) are episodes (rather than events) that
1157have been analytically identified as being relevant to activity in the activity theoretic sense.
1158Barab et al.’s AREs are larger units than events, and are identified further into the analytic
1159process than events. Contingency graphs could be constructed on AREs, but they also can
1160be constructed on automatically selected events prior to identification of the relevance of
1161events (or episodes) to an activity. In the uptake analysis framework, the contingency
1162graphs are the input to the analytic process: No prior coding other than identification of
1163latent events and contingencies is needed. In CN-ARE, the AREs are the product of an
1164analytic process of identifying and coding segments. AREs are defined in terms of “core
1165categories” such as “issue at hand,” “instigators,” and “practices,” categories that could be
1166the output of uptake analysis at a finer granularity.
1167The “links” of CN-ARE and our “contingencies” are very similar if not identical ideas.
1168Links are

11691170“… anything that ties one node ... to any other node. Thus, conceptually, all our codes
1171can serve as links between nodes. Time links nodes historically, practices link nodes
1172of similar practices together, resources link nodes of specific resources used together,
1173and initiator and participant codes link people.” (Barab et al. 2001, p. 78).
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11741175In our framework, many of these relationships between events can serve as
1176contingencies, although our analyses are applied at a finer granularity to identify practices
1177as displayed by sequences of coordinations rather than to assume them as properties of
1178single episodes, and we prefer to apply analytic interpretations to relationships between acts
1179or patterns of uptake rather than to single acts or episodes treated as “nodes.”
1180In CN-ARE, episodes are organized along an ordinal timeline. In the contingency
1181graph, contingencies are the fundamental organizer of events rather than time.
1182Timelines may also be included, but we do not assume a single timeline. The CN-
1183ARE practice of following “tracers” is similar to our practices of tracing pathways
1184through contingencies. New work underway at this writing focuses on developing
1185methods for “tracing out the movement, confluences, and transformations of persons,
1186artifacts and ideas in sociotechnical systems” via the contingency graph and derivative
1187representations (Suthers and Rosen 2009).
1188In general, we are very sympathetic to CN-ARE, and see potential for productive
1189synthesis when activity-relevant episodes are the right granularity of analysis. Contingency
1190graphs may be applied directly at this granularity or may be used to discover episodes in
1191subgraphs of a contingency graph that are then chunked into AREs for further analysis.
1192The contingency graph is an abstract data representation, not a modeling tool, but brief
1193comparison to related representations for modeling highlights some important points. State-
1194based representations (e.g., Jeong 2005; Olson et al. 1994) are not appropriate for
1195distributed interaction because there is no single event at a given time nor a single unit of
1196time common to all actors to which state attributes can be assigned. The confluences of
1197events in distributed systems are too complex to represent as a state. Furthermore, state
1198representations are historical in that they encapsulate all history in the state: The sequential
1199organization of prior events is not accessible from a state, and the sequential development
1200of learning processes is unavailable. Petri net representations summarized by Reimann
1201(2009) and detailed by van der Aalst and Weijters (2005) solve some of these problems.
1202They have superficial similarities to contingency graphs (capturing the sequential
1203organization of events in a partial ordering), but, being process-model representations
1204rather than data representations, they include devices such as conjunctive and disjunctive
1205branching that are not relevant to a record of an actual network of events. Furthermore,
1206significant analytic work has to be done before building these models: The algorithm of van
1207der Aalst and Weijters (2005) requires that instances of the process to be modeled have
1208been identified, that each event has been associated with a single instance of the process,
1209and that each event has been categorized with a code that is unique within its assigned
1210process.
1211Similarly, the uptake-analysis framework is not a software tool, but brief comparison to
1212software tools for analysis help highlight some affinities and differences with other
1213approaches. Some analytic tools are embedded within particular software environments,
1214enabling replay of recorded sessions (e.g., VMT; Stahl 2009) and display of derived
1215analytic representations (e.g., Larusson and Alterman 2007; Teplovs 2008). In contrast, the
1216uptake-analysis framework has supported both empirical and theoretical integration of
1217investigations in multiple software environments. Several useful analytic tools have been
1218developed that integrate multiple sources of data by aligning them to a single timeline by
1219which they are synchronized during analysis or replay. These include the Collaborative
1220Analysis Tool (Avouris et al. 2007), Digital Replay System (Brundell et al. 2008) and
1221Tatiana (Dyke and Lund 2009). These efforts are to be commended for developing analytic
1222software and making it available to others, a step we have not yet taken. Generally these
1223tools are developed to support reconstruction of synchronous interaction at a scale
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1224experienced by a small set of participants. Partial synchronization via contingencies (or
1225temporal constraints however expressed) between data streams could make future versions
1226of these tools applicable to asynchronous distributed interaction as well. However, scaling
1227up to phenomena arising from distributed interaction between larger numbers of individuals
1228will require stepping outside of the replay paradigm.
1229Finally, the uptake analysis framework is not a visualization tool. Contingency graphs
1230have been visualized in this paper as node-link diagrams for exposition, but this
1231visualization is not identical to the formal graph-theoretic representation, and other
1232visualizations are possible. For example, it may be useful to visualize contingency graphs
1233using episodic timelines, such as in CORDFU (Luckin 2003) and CORDTRA (Hmelo-
1234Silver 2003). Events can be defined using time durations rather than time points, or a
1235recurring sequence of similar events at time points can be aggregated and visualized as a
1236continuous episode (but see Reimann’s 2009, caution concerning treating event-based
1237phenomena as continuous). The potential visualizations are limited only by the underlying
1238ontology.

1239Limitations

1240A limitation of the framework is that, in focusing on observed interaction in an event-based
1241ontology, it does not explicitly acknowledge the cultural or historical situatedness of the
1242participants, or address identity and community, except where these constructs might be
1243recorded in terms of prior events. It may be possible to represent influences exogenous to
1244the interaction with contingencies to pseudo-events that exist prior to the interaction.
1245In interpreting our graphs, we have encountered several issues related to the intrinsic
1246incompleteness of a contingency graph as a data representation. One must be careful not to
1247make inferences based on the absence of events and contingencies in the graph: Any graph
1248is partial and can be extended indefinitely due to the continuous nature of human action.
1249There are risks in conducting an analysis entirely by using the contingency graph. In
1250addition to being a structure of interest in its own right, the graph should be used as an
1251index to the original data. Visualization software can facilitate this by overlaying or
1252simultaneously displaying the graph with the source media (e.g., with tools such as
1253Brundell et al. 2008; Dyke and Lund 2009).
1254We have also found that it is important not to fix analysis at one level (Lemke 2001),
1255and, in particular, that meaningful units may occur at granularities above the granularity at
1256which events are originally identified. Our work has suggested two constructions: (1)
1257interactionally defined representational elements that do not correspond to any explicit
1258representational notation (e.g., defining groups by spatial co-location), and (2) composite
1259coordinations in which two or more media events seem to share a conception (e.g., a
1260sequence of moves that forms a representational configuration). A pressing task is to extend
1261the contingency graph formalism to better incorporate composite events and ambiguities
1262and degrees of association in contingencies. A complete explication of these two items is
1263necessary to extend the potential algorithmic support provided by the contingency graph
1264structure.
1265Another postulated limitation is actually a strength of the framework. Colleagues have
1266remarked that the number of potential contingencies for any given act is huge, and so the
1267contingency graphs can become quite complex. The richness of contingencies is a property
1268of human action, not a limitation of the contingency graph approach. An approach that
1269allows and encourages analysts to make contingencies explicit, and does so with a formal
1270representation that is amenable to computational support for analysis, is superior to one that
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1271does neither. Yet these colleagues’ concern demonstrates the need for software support in
1272retrieving information from and obtaining selective views of the contingency graph.

1273Future work

1274The greatest practical need is to develop software tools to help construct and use the
1275contingency graph. The need for improved analysis tools is a recurring theme (Sanderson
1276and Fisher 1994), and the size and density of potential data sets in the emerging
1277ubiquitously connected world exacerbates this need. It is time consuming to construct a
1278contingency graph manually. Initially, our contingency graphs were constructed using tools
1279such as Excel™, Visio™, and Omnigraffle™. Early analyses took place over many months
1280concurrently with extensive discussions in which we developed the theoretical and practical
1281basis for the framework and revised the graphs multiple times. Subsequently, we conducted
1282similar manual analyses of other sessions in several days. Customized software support can
1283help address this problem by partially automating data collection and the construction of the
1284graph through contingencies. Two prototype tools have been constructed: the Uptake Graph
1285Utility described previously, and a tool for constructing and visualizing the reply structure
1286of discussions in Tapped IN and CLTNet online communities. The present work has
1287developed the initial representational specifications for further development of a shareable
1288set of tools. These tools should enable access to contingency graphs at multiple
1289granularities and through filters, compressing them in time and/or scanning for patterns.
1290An analyst need not even use a graph representation at all: Visualization tools can convert
1291the underlying graph model into any useful visualization. Other visual representations
1292should be explored.
1293In ongoing work, we continue to apply the uptake analysis framework to a diversity of
1294data in preparation for development of software support tools. Our objective is to speed up
1295the analysis of intersubjective meaning making to the point where it need not be limited by
1296tedious microanalysis, but can also be efficiently applied on a larger scale. An important
1297aspect of evaluating this framework will be to determine how well it scales to larger groups
1298across longer time scales. With improved automation it might be possible to generate
1299contingency graphs for larger online communities over the course of months or even years.
1300It remains to be seen whether the constructs of coordinations, contingencies, and uptake
1301remain useful as the foundation for further analysis at these scales.

1302Boundary objects for CSCL

1303The framework presented in this paper was developed to meet the immediate practical
1304needs in our laboratory to support multi-method analyses of distributed interaction.
1305However, this is only part of the story. We also had an additional motivation that to our
1306surprise has turned out to be controversial, and, hence, left for the end of this paper so as
1307not to detract from the primary contribution. We believe that the need for theoretical and
1308methodological dialogue that we encountered in our own laboratory is a microcosm of a
1309need that also exists in the CSCL community. Diverse lines of work exist in CSCL and
1310allied endeavors: We study interaction in different media, examine phenomena ranging
1311from micro-episodes in small groups to large communities over periods of weeks to
1312months, and analyze data using various “qualitative” and “quantitative” analytic practices in
1313studies framed by diverse and potentially incommensurate world views. This multivocality
1314of CSCL is a strength, but only if there are “boundary objects” around which productive
1315discourse can form (Star and Griesemer 1989). Boundary objects “have different meanings
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1316in different worlds but their structure is common enough to more than one world to make
1317them recognizable, a means of translation” (ibid, p. 393). Various candidates for such
1318objects exist: For example, productive discourse might form around shared phenomena of
1319interest, data sets, research questions, topic domains, and/or theories. Suthers (2006b)
1320proposed the study of technology affordances for intersubjective meaning making as a focal
1321phenomenon for CSCL, arguing that this topic distinguishes CSCL; is one on which we are
1322best positioned to make progress; and that progress would inform not only our
1323understanding of learning but other aspects of human activity as well. The work reported
1324in this paper can be taken as a different basis for discourse in CSCL: a framework for
1325representing data and conceptualizing interaction that unifies data from diverse sources and
1326supports analytic practices from multiple traditions. Other researchers have constructed
1327various specialized analysis and visualization tools to address the challenges of analyzing
1328distributed interaction, but we suggest that a less ad hoc approach will further progress.
1329Advances in other scientific disciplines have been accompanied with representational
1330innovations, and shared instruments and representations mediate the daily work of scientific
1331discourse (Latour 1990). Similarly, researchers studying learning that takes place through
1332interaction may benefit from shared ways of conceptualizing and representing the phenomena
1333of interest as a basis for scientific and design discourse. Without these, it is difficult to build on
1334each other’s work except within homogeneous sub-literatures. We offer this framework to the
1335research community in hopes it may support productive dialogue within the learning sciences.
1336In doing so, we do not claim that a theoretically and methodologically unified field with one
1337object of study is possible. Far from this, we do not even think it is desirable: Multivocality is a
1338strength, and the value of boundary objects is based on this diversity. Rather, we advocate only
1339for identifying common objects for productive discourse across what would otherwise be
1340disjoint bodies of work, and herein propose further such objects.
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