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13Abstract
14The increasing use of digital learning tools and platforms in formal and informal
15learning settings has provided broad access to large amounts of learner data, the
16analysis of which has been aimed at understanding students’ learning processes,
17improving learning outcomes, providing learner support as well as teaching. Present-
18ly, such data has been largely accessed from discussion forums in online learning
19management systems and has been further analyzed through the application of social
20network analysis (SNA). Nevertheless, the results of these analyses have not always
21been reproducible. Since such learning analytics (LA) methods rely on measurement
22as a first step of the process, the robustness of selected techniques for measuring
23collaborative learning activities is critical for the transparency, reproducibility and
24generalizability of the results. This paper presents findings from a study focusing on
25the validation of critical centrality measures frequently used in the fields of LA and
26SNA research. We examined how different network configurations (i.e., multigraph,
27weighted, and simplified) influence the reproducibility and robustness of centrality
28measures as indicators of student learning in CSCL settings. In particular, this
29research aims to contribute to the provision of robust and valid methods for measuring
30and better understanding of the participation and social dimensions of collaborative
31learning. The study was conducted based on a dataset of 12 university courses. The
32results show that multigraph configuration produces the most consistent and robust
33centrality measures. The findings also show that degree centralities calculated with
34the multigraph methods are reliable indicators for students’ participatory efforts as
35well as a consistent predictor of their performance. Similarly, Eigenvector centrality
36was the most consistent centrality that reliably represented social dimension, regard-
37less of the network configuration. This study offers guidance on the appropriate
38network representation as well as sound recommendations about how to reliably
39select the appropriate metrics for each dimension.
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44Introduction Q2

45Research in computer-supported collaborative learning (CSCL) focuses on learning processes
46that take place through group practices and interactional processes mediated by computers
47(Stahl et al. 2014). CSCL typically promotes collaboration where students can share, discuss,
48and exchange ideas via, for example, text-based discussion boards (Dillenbourg et al. 2009;
49Stahl et al. 2014; Weinberger and Fischer 2006). In many constructivist pedagogical ap-
50proaches, including problem-based learning, students are expected to make joint decisions,
51negotiate roles, as well as regulate and modify learning strategies and group work through
52dialogue (Hennessy and Murphy 1999), which relates to the important participation and social
53dimensions of collaborative learning. Yet, organization of dynamic collaborative learning
54imposes several challenges and problems, especially in terms of the group dynamics and
55formation (Kreijns et al. 2013; Näykki et al. 2014). To be able to address these challenges, we
56need to better and more accurately understand various aspects of CSCL, and the present
57advances in the fields of learning analytics and social network analysis have proven to be
58valuable in this regard.
59Scholars posit that the collaborative learning process in CSCL settings is a complex
60knowledge construction process that can be analyzed along several dimensions. For example,
61Kreijns et al. (2013) suggest that collaborative learning has both a cognitive dimension (e.g.,
62acquisition of knowledge and skills) as well as a socioemotional dimension that underlies these
63cognitive processes (e.g., group interactions and dynamics). In other words, stimulating and
64building valuable as well as sound relationships serves as a catalyst for students’ cognitive
65gains. Others have operationalized collaborative learning through the following four dimen-
66sions: the participation dimension, the argumentative dimension, the epistemic dimension and
67the dimension of social modes of co-construction (Weinberger and Fischer 2006). While many
68studies involving the use of text-based discussion forums have examined argumentative and
69epistemic dimensions of collaborative learning (Fu et al. 2016), this study aims to contribute to
70a deeper understanding of the participation and the social dimensions and in particular, to the
71validation and reproducibility of the (computational) centrality methods to measure, under-
72stand, and reliably represent these dimensions of collaboration. This is critical, since the
73reproducibility of research findings regarding centrality measures is a problem stressed by
74many scholars (for more, see Sections 2.3 & 2.4).
75As the effectiveness of CSCL depends both on participant and idea interaction, understand-
76ing of both the participation and the social dimensions is essential for creating good conditions
77that facilitate productive knowledge co-construction among students (Hong et al. 2010). To
78uncover the complex dynamics of these dimensions, this study takes advantage of the recent
79advances in: (1) the learning analytics (LA) field, which refers to the “measurement, collection,
80analysis and reporting of data about learners and their contexts, for purposes of understand-
81ing and optimizing learning and the environments in which it occurs” (Siemens and Long
822011, p. 34), and (2) social network analysis (SNA). In the context of CSCL, advances in SNA
83and LA have provided new tools to explore the collaborative learning processes by tracking,
84collecting, analyzing, and reporting data about how a student contributes to the joint activities,
85externalizes their own ideas, comments on and responds to peers (i.e., the participation
86dimension) and builds on the ideas and contributions of others in knowledge co-construction
87(i.e., the social dimension) (Berland et al. 2014; Fincham et al. 2018; Gaševi et al. 2015;
88Schneider and Pea 2014) Such improved understanding of the both dimensions provides
89researchers, teachers and students with fundamentally new, data-driven ways to: (1) view

Saqr M. et al.

JrnlID 11412_ArtID 9322_Proof# 1 - 03/07/2020



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

90and support the critical phases of collaborative learning, (2) find evidence of critical moments
91of success or failure, and finally, and (3) to act upon this information to improve conditions for
92learning and collaboration (Noroozi et al. 2019).
93The use of SNA in combination with LA requires researchers to make several critical
94decisions with respect to selected techniques for accurately measuring complex dynamics of
95participation and social interaction. However, despite the critical importance of using validated
96methods to measure collaborative learning, only few LA research studies have hitherto
97addressed the validity of the employed methods (see, e.g., Kovanovic Q3et al., 2015; Fincham
98et al. 2018). Given the significance of the participation and the social dimensions of collab-
99orative learning, this study seeks to extend the work on methodological choices by focusing on
100the validation of centrality measures (i.e., outdegree, indegree, closeness, betweenness and
101eigenvector centralities) in CSCL settings.
102The study aims to answer the following research questions:
103How do different network configurations influence the reproducibility and robustness of
104centrality measures as indicators of student learning in collaborative learning settings?
105What are the most robust centrality measurements that are least sensitive to different
106network configurations?
107What are course network structural factors that could explain the variability of findings?
108This article starts by discussing the concept of centrality measures and how they have been
109operationalized to indicate students’ participatory efforts, to identify roles, predict learning
110gains, as well as monitor interactivity. Then, it presents a review of the issues with current
111methods and discusses how different network configurations influenced the reproducibility
112and robustness of centrality measures as indicators of student learning. The article concludes
113by arguing that the accurate representation of SNA centrality measures is vital for facilitating
114students’ participation and interaction, and also for understanding of the complex dynamics
115and patterns of participation in productive knowledge construction.

116Background

117Several studies have sought to automate the analysis of CSCL using computational methods.
118One such method is interaction analysis, which offers analysis of students’ posting behavior,
119comparative statistics or visualizations (e.g., Martínez-Monés et al. 2011; Rodríguez-Triana
120et al. 2013). SNA is another computational method that has been similarly implemented to
121analyze the participatory and the social dimensions of CSCL through indicators known as
122centrality measures. These measures have been used to: indicate students’ participatory efforts,
123monitor engagement, identify participatory roles (e.g., active, coordinators and isolated) or
124forecast learning gains. In the next sections, we will discuss the concept of centrality measures
125and how they have been operationalized to explain the participatory and social dimensions of
126CSCL. Finally, we conclude by discussing why methodical refinement is needed, and why the
127existing methods are insufficient.

128The concept of centrality measures

129Centrality is a concept used to indicate the importance, relevance, or value of an actor (e.g., the
130learner or the teacher) in a network It is computed from network representations using
131mathematical formulae. The concept of centrality was applied to human communications
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132and dates back to late 1940s at MIT, where Bavelas and his colleagues studied the association
133between structural position and influence in group processes (Bavelas 1948). In his seminal
134article, Freeman (1978) stresses that an important actor in a network has more connections
135(i.e., higher degree centrality), can reach others (i.e., higher closeness centrality), and connects
136between others (i.e., high betweenness centrality). Since the concept of value or relevance may
137have different meanings in different learning settings, there are various centrality metrics that
138reflect this diversity (Borgatti and Everett 2006; Freeman 1978).

139Operationalization of centrality measures in CSCL

140Centrality measures have been used as indicators for several aspects of CSCL, including the
141participatory- and social dimensions. Measures of the participatory dimension include
142outdegree centrality, which is frequently calculated as the number of out-posts generated by
143a learner, or the number of the learner’s contacts. It serves as an indicator of quantity of
144participation in the collaborative knowledge (co)-construction (Cadima et al. 2012; Joksimovic
145et al. 2016). The pace of outdegree centrality has also been linked to self-regulation in learning
146and better achievement (Saqr et al. 2019a). Indegree centrality is commonly used to demon-
147strate the importance and worthiness of a learner contribution, prestige and authority in
148knowledge construction as well as the popularity of the learner. Indegree measures the times
149a learner has been responded to. In other words, it serves as an indicator of social interaction in
150which the learner connects, elaborates and integrates ideas by referring to contributions of the
151learning partners (Hershkovitz 2015; Hong et al. 2010; Reychav et al. 2018; Romero et al.
1522013).
153The measures that reflect the social dimension of CSCL include closeness centrality,
154betweenness centrality and eigenvector centrality. Closeness centrality refers to the degree to
155which an individual is close to all other members in a given network. It measures the
156engagement level of the learner, the distance to all others in the discourse, and closeness to
157the collaborators. It is often operationalized as the ease of reachability and the ease of access to
158information (e.g., Hernández-García et al. 2015 Q4; Liu et al. 2019; Osatuyi and Passerini 2016).
159Betweenness centrality represents learner engagement in the discourse. Higher values of
160betweenness reflect access to opportunities to control information exchange and diversity of
161information and its novelty (Cadima et al. 2012; De-Marcos et al. 2016; Reychav et al. 2018;
162Saqr et al. 2018b). It measures when a learner has been on the shortest path between others, or
163connected others. The last centrality measure used in this study is eigenvector centrality; it
164considers the centrality scores of the collaborators; therefore, it reflects the selectivity of the
165learner and quality of connections. Eigenvector centrality is expected to be higher in students
166engaged in discourse with active and engaged collaborators. It has frequently been operation-
167alized as influence, connectedness and building significant social capital (De-Marcos et al.
1682016; Liu et al. 2018a Q5; Putnik et al. 2016; Traxler et al. 2016).

169The need for validated methods

170Decades of research on social networks have contributed to several revisions and refinements
171of the centrality concept (Borgatti 2005; Borgatti and Everett 2006; Freeman 1978; Liao et al.
1722017; Opsahl et al. 2010). In several research areas, to achieve more robust results, scholars
173were able to identify the relevant centrality measures optimal for specific problems, devise
174better computational algorithms, and develop standardized data operationalization techniques
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175(e.g., Liao et al. 2017; Lü et al. 2016). A popular example is the development of the PageRank
176centrality used by Google to identify relevant search results (Liao et al. 2017). Nevertheless,
177many challenges remain, for example, which metrics are more efficient in ranking actors in a
178particular context, and how weighting affects node centrality (Liao et al. 2017; Lü et al. 2016).
179Each network representation method can result in a different network configuration and
180different centrality metrics. Consequently, it is important to identify which methods yield the
181representative and the most robust centrality measures of the dimension or phenomenon they
182are thought to represent. In this study, we in particular focus on the validation of the centrality
183measures – in terms of their reliability and consistency – used to measure and explain the
184important participatory and social dimensions of CSCL.

185Issues with current methods

186Variability of results

187The variability of findings regarding centrality measures is a problem identified by many
188researchers (e.g., Agudo-Peregrina et al. 2014; Fincham et al. 2018; Hernández-García et al.
1892015; Joksimovic et al. 2016; Rogers et al. 2016; Saqr et al. 2018a Q6). In the context of CSCL,
190indegree centrality was, for example, reported to be positively correlated with learners’
191performance in several studies (Hernández-García et al. 2015b; Liu et al. 2018a Q7; Saqr et al.
1922018a; Wise and Cui 2018). Others have reported no significant correlations (Reychav et al.
1932018; Saqr and Alamro 2019). Outdegree centrality was also found to correlate with learner
194performance (Hernández-García et al. 2015; Saqr et al. 2018; Saqr and Alamro 2019).
195However, others (Liu et al. 2018a; Reychav et al. 2018) have shown no significant correla-
196tions. The problem extends to other centrality measures, such as closeness and betweenness
197centrality, that were indicated on the one hand to be positively correlated with performance
198(Hernández-García et al. 2015; Liu et al. 2018a), but on the other hand were not (e.g., Reychav
199et al. 2018; Saqr and Alamro 2019). The reasons for this variability were attributed to
200contextual and network operationalization factors (Agudo-Peregrina et al. 2014; Fincham
201et al. 2018; Joksimovic et al. 2016), explained in the sections below.

202Operationalization of data

203There are three main factors in network representation to consider: (1) what a tie is, (2) what
204the weight (strength) of a tie is, and (3) how the whole network is aggregated (Lü et al. 2016;
205Opsahl et al. 2010). Few studies have been devoted to the examination of the role of different
206network configurations (Fincham et al. 2018; Wise et al. 2017) in the field of education.
207Recently, LA researchers have started to address this gap (Bergner et al. 2018). Fincham et al.
208(2018), for example, examined the influence of different tie extraction methods on a network
209structure and statistical metrics. The findings exhibit a significant influence of each tie
210extraction method and the information derived from the network. The authors also found that
211the correlation between centrality measures and academic performance varied significantly
212with each tie extraction method, and stressed the importance of transparency of the tie
213definition. For any SNA analysis, the definition of a tie is crucial since each definition carries
214with it a set of beliefs about the nature of social interactions: while most scholars define ties on
215the basis of direct replies, others rely on co-presence, where a tie within a network is explained
216as being present in the same part of the discussion (Fincham et al. 2018).

International Journal of Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9322_Proof# 1 - 03/07/2020



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

217Equally important to the definition of the tie, is the weight assigned to the tie, and how
218duplicate ties or loops are dealt with to form the final configuration of the network (Opsahl
2192009; Opsahl et al. 2010; Shafie 2015; Tsugawa et al. 2015; Wei et al. 2013). In CSCL – the
220focus of this study – a tie is usually considered when a learner replies to another learner and is
221operationalized as an edge from the source (the post writer) to the target (the replied-to).1 Ties
222have been used to, for example, construct an aggregated network (Dado and Bodemer 2017).
223Forming such a network requires the researcher to make decisions on the aggregation of ties,
224such as duplicate ties (i.e., when two users exchange multiple interactions), the loops (i.e.,
225when a user replies to self), the weight of the ties (i.e., whether the ties have a strength or not
226such as the size of the post), and lastly, whether to keep every tie or extract the backbone
227network (a sub-network with only important ties of a certain strength or threshold).
228To demonstrate the network configuration, Fig. 1 introduces the same network with three
229representations. Figure 1a presents a multigraph network, where duplicate ties and loops are
230allowed. Figure 1b shows a simplified weighted network (loops and multiple ties removed); the
231thickness of the ties represents the weight of the tie. In the figure, the weight corresponds to the
232frequency of interactions among nodes. Figure 1c is a representation of a simplified network
233where all duplicate edges and loops were removed. Each of these configurations underscores a
234certain aspect. Multigraph configuration highlights quantity and effort. Weighted configuration
235emphasizes the tie strength or quality. The simplified graph highlights diversity over multi-
236plicity (Opsahl 2009; Shafie 2015; Tsugawa et al. 2015).

237Contextual factors

238The contextual variability is a widely recognized aspect in the field of LA in general and in
239SNA studies in particular (Bergner et al. 2018; Joksimovic et al. 2016). Interactions between
240students, teachers and learning tools in a course frequently vary by context and/or instructional
241conditions (Gašević et al. 2016; Rogers et al. 2016). These variations result in a substantial
242heterogeneity of learners’ interactions (Lockyer et al. 2013). For instance, networks derived
243from a collaborative discussion among students are expected to be different from a question/
244answer forum with a teacher (Lockyer et al. 2013). In the former (collaborative discussion),
245outgoing interactions (outdegree), as well as incoming replies (indegree) are expected to
246correlate with students’ engagement in a collaborative learning activity. While in the latter
247(discussion with the teacher) outdegree matters more as it signifies students’ answers. One of
248the possible shortcomings is that the operationalization of ties and their relation to learning
249outcomes are not ‘measured.’ Furthermore, some ties might not be accurately defined,
250especially when students address each other directly in the text (by mentioning their names)
251or indirectly through addressing their contribution while replying.

252Motivation for this study

253Since LA relies on measurement as a first step of the process (Siemens and Long 2011), the
254robustness of selected techniques for measuring (collaborative) learning activities is critical for
255several reasons. First, adequate measurements help generalizability and replicability of re-
256search findings. Secondly, theory and measurement are interdependent. For a theory to

1 There are other tie definitions too. For a review and methodological discussion, please see the study by
Fincham et al. (2018)
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257advance our understanding of the complex nature of learning and teaching processes, there is
258an evident need for valid measurements and testable models that can deliver reproducible
259results (Loken and Gelman 2017; Smaldino and McElreath 2016). As stressed by Bergner
260et al. (2018), “It can safely be assumed that without foregrounding methodological choices in
261learning analytics we run the risk of generating more doubt” (p. 3).
262Through the validated SNA measures applied to CSCL, scholars can uncover and explain
263better the participation and social dimensions of collaborative learning using the centrality
264measures of degree, closeness, betweenness and eigenvector centralities. These measures
265represent, for example, quantity, ego network size, diversity, positioning, sociability and role
266in information exchange (Rienties et al. 2009; Weinberger and Fischer 2006). Consequently,
267they are used, for instance, to monitor students’ engagement, forecast learning gains and
268identify roles in a learning network. Each of these centralities is expected to have a different
269value in each network configuration and with different weight choices (Fincham et al. 2018;
270Opsahl 2009; Shafie 2015; Tsugawa et al. 2015; Wei et al. 2013). Therefore, it is critical to
271examine the influence of different network configurations on the resulting network, and this
272study aims to fill this gap.
273This study aims at establishing sound methodological guidelines regarding operationalizing
274of the important participatory (behavior) and social dimensions of CSCL using SNA to
275accurately reflect what it is supposed to measure. More importantly, we aim to examine the
276reliability and reproducibility of the frequently used measures. Results aim to guide the choice
277of adequate and robust methods for construct operationalization and better reproducibility.
278Given the importance of research on the methodological choices in SNA and LA in education,
279we argue that studies are needed to fill such a gap that helps to test the measurements, their
280reproducibility and their influence on findings. As Wise and Schwarz posit, the substantial
281question in using computational methods to understand CSCL is “how to develop practices
282and norms around their use that maintain the community’s commitment to theory and
283situational context” (Wise and Schwarz 2017, p. 448).

284Method

285Context

286The study was conducted based on a dataset of four university courses (in medical higher
287education) over three iterations (12 courses in total) during the years 2016–2018 (Table 1). The
288courses were chosen so that we could compare different iterations of the same course by
289different students and compare the same students taking different courses. To minimize the
290effect of a specific learning design, the courses were chosen based on essentially the same
291design of problem-based learning (PBL), expecting students to engage in discussion forums
292with the same rules. The examined courses also had the same duration (i.e., eight weeks) and
293similar weight of credit hours (i.e., eight hours each).
294In the targeted courses, students were assigned to small groups (five groups per course of
295seven to eleven students) with a tutor. On a weekly basis, they were offered a problem (online)
296aimed to act as a trigger for further discussions. The problems were real-life scenarios of
297complex patients’ problems that did not have any single direct solution. The problems were
298formulated to stimulate the discussion about gaps in students’ current knowledge and identify
299new topics they have to learn, collaboratively work together to learn these issues, share their
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300understandings, argue, and comment on their work. By the end of the week, students were
301expected to: (1) have reached a common understanding of the problem, (2) have reflected on
302their collaborative work, and (3) have received feedback from their tutor and peers. The
303interactions took place online in the Moodle learning management system (LMS) forums. A
304thread was created for each group for each weekly problem. An abridged sample of the
305discussions from the course Principles of Dental Sciences 2016 is shown in Fig. 2.
306The performance was measured by the grades given for a PBL task, consisting of a
307multiple-choice knowledge test that assessed students’ acquisition of the knowledge of the
308PBL objectives and the performance of the individual student as evaluated by the tutor. The
309tutor evaluated the students’ contributions based on three criteria: (1) their contributions to the
310discussions and presentation of their arguments, (2) their engagement with other peers in the
311group, as well as (3) their reflection on their performance. To minimize subjectivity, the
312evaluating tutor was unified for all groups for each week. Each knowledge exam is reviewed
313for quality by the assessment committee and a post-exam psychometric analysis; grades were
314adjusted accordingly.

t1:1 Table 1 Characteristics of the selected courses

t1:2 Course Code N Edge count* Average degree

t1:3 Multigraph Simplified Weighted

t1:4 Body Systems 2016 C1 48 1476 54.35 6.75 8875.02
t1:5 Dental Surgery 2016 C2 48 439 16.48 3.44 3295.19
t1:6 Dental Neuroscience 2016 C3 49 696 25.16 5.00 7226.67
t1:7 Principles of Dental Sciences 2016 C4 47 810 31.55 4.77 5364.62
t1:8 Body Systems 2017 C5 54 1210 41.74 10.59 21,258.91
t1:9 Dental Surgery 2017 C6 53 1033 36.83 11.30 21,928.06
t1:10 Dental Neuroscience 2017 C7 54 1116 39.72 11.76 19,793.02
t1:11 Principles of Dental Sciences 2017 C8 54 3134 109.63 16.31 45,961.20
t1:12 Body Systems 2018 C9 50 731 23.98 7.52 6741.84
t1:13 Dental Surgery 2018 C10 50 567 19.44 5.16 2505.02
t1:14 Dental Neuroscience 2018 C11 45 1497 46.78 10.04 8720.80
t1:15 Principles of Dental Sciences 2018 C12 46 719 23.15 6.30 3913.30

* The number listed is for multigraph representation

Fig. 1 Three different representations of the same network
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315Data collection and data analysis

316Data were extracted from the LMS log system. The collected data included the username, the
317forum ID, the post ID, the post writer, the post target, the post content, the post subject, the
318thread ID, and the group ID. Posts that were outside the PBL discussions (i.e., news,
319announcements, social interactions) were excluded. The data were used to construct the
320networks by considering an edge as when a student replies to another student. As each online
321group was separate, a network was generated for each group.
322Three types of networks were created:
323Multigraph network, where all interactions were compiled, loops and multiple edges were
324retained.
325The simplified network where loops and multiple edges were removed.
326Weighted, where each edge was assigned the weight of the number of characters a student
327has posted.
328For each student in each course, the five most-used centrality measures were calculated for
329each network.
330Outdegree centrality: refers to the number of messages a student posted (multigraph), or the
331number of unique users a student contacted (simplified), or the total volume of text a student
332posted (weighted) (Liao et al. 2017; Opsahl et al. 2010; Stephenson and Zelen 1989; Wei et al.
3332013). Outdegree is commonly operationalized as the effort and participation of a learner in
334forums (Hernández-García et al. 2015; Saqr et al. 2018a; Saqr and Alamro 2019).
335Indegree centrality: refers to the number of replies a student gets (multigraph), or the
336number of unique users who have replied to the student (simplified), or the total volume of text
337a student has received from all contacts (weighted) (Csardi and Nepusz 2006; Liao et al. 2017;
338Opsahl et al. 2010; Stephenson and Zelen 1989; Wei et al. 2013). Indegree is always
339operationalized as prestige, leadership or worthiness of argument to discuss, debate or be
340replied to (Liao et al. 2017; Liu et al. 2018a; Lu et al. 2017; Saqr et al. 2018a).

Fig. 2 An abridged sample of the discussions from the course Principles of Dental Sciences 2016, shows
students discussing the problem of exposure to X-rays. Names have been changed for privacy
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341Betweenness centrality: is the number of times a student has connected to unconnected
342users (on the paths between them), the multigraph variant considers all interactions. While the
343simplified variant considers only the unique variant, the weighted variant is calculated as
344weighted by the post size (Lü et al. 2016; Stephenson and Zelen 1989). Students who have
345high betweenness centralities control the flow of information as well as have access to diverse
346perspectives and resources.
347Closeness centrality: represents the closeness of a student to all others in a network (inverse
348distance). The multigraph variant takes into account all interactions; the simplified variant
349considers only the unique interactions, and the weighted variant is calculated as weighted by
350the post size (Lü et al. 2016; Stephenson and Zelen 1989). Closeness centrality is a sign of ease
351of accessibility to all others and reachability (Lü et al. 2016; Stephenson and Zelen 1989).
352Eigenvector centrality: in contrast to degree centrality that counts only the number of
353contacts. Eigenvector centrality calculates the number of contacts and their cumulative
354strength; as such it is computed as the sum of all centralities of a student’s contacts. In a
355CSCL context, it reflects student positioning, selection of peers and relations. It is expected to
356be higher if a student interacts with others who are engaged in discourse and lower in students
357who interact with disengaged and/or isolated students. Therefore, Eigenvector centrality
358captures the social positioning of the students more reliably than the other centrality measures
359(De-Marcos et al. 2016; Liu et al. 2018a; Putnik et al. 2016; Traxler et al. 2016).
360For each network, we calculated the average degree as the mean number of edges that
361represent messages posted or received by a participant in the course, and we calculated the
362network density as the proportion of actual edges among students to the maximum possible. In
363this study, all centrality measures were calculated with the Igraph library (Csardi and Nepusz
3642006) implemented in the R programming language version 3.52 (R Core Team 2018). Since
365centrality measures were estimated from groups with different sizes, two versions were
366calculated for each centrality measure: (1) A normalized centrality, i.e., the centrality measure
367is divided by the number of students to balance the influence of group size on the number of
368possible interactions in the group (Saqr et al. 2019b), and (2) an unmodified version, raw or
369non-normalized version, in which we report the centrality measure as it is, with no modifica-
370tion. Both methods are reported and compared to test the influence of group size on the
371robustness of the methods.

372Ethics

373The study was approved by the college ethical committee. Data utilized in this study were
374anonymized, and personal information was removed during analysis. The researchers of this
375study did not participate in teaching or grading the studied courses and the analysis started after
376courses ended.

377Results

378Participants

379The study was performed on a dataset from 12 courses consisting of 13,428 interactions from
380598 students. The number of students in each course ranged from 45 to 54, with a mean of
38149.83 (Table 1). The median frequency of interactions in a course was 921.5 and ranged from
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382439 to 3134. The mean strength was 201.48 (SD 15.99); the mean degree was 9.36 (SD 4.02);
383the mean size of the post was 1096 characters, while the median was 329.
384How do different network configurations influence the reproducibility and robustness of
385centrality measures?

386Indegree centrality

387The Spearman correlation between indegree centrality calculated with the multigraph method
388proved to be consistently positively correlated, and with higher strength of correlation
389coefficient with performance, in the 12 studied courses (Fig. 3). The correlation coefficient
390ranged from r = 0.54, p < 0.01 to r = 0.77, p < 0.01; the coefficient value was also stronger than
391the other configurations in eight courses. The simplified configuration was positively and
392significantly correlated with performance in nine courses, with a correlation coefficient that
393ranged from r = 0.42, p < 0.05 to r = 0.7, p < 0.01, while not correlated with three courses: C2
394(r = 0.22, p = 0.13), C4 (r = 0.15, p = .33), C10 (r = 0.03, p = 0.85). The weighted configuration
395was positively correlated with 10 courses, with a correlation coefficient ranging from r = 0.29,
396p < 0.05 to r = 0.7, p < 0.05 and not correlated with two courses: C2 (r = 0.03, p = 0.83) and
397C10 (r = −0.05, p = 0.73).
398Similar results were obtained when the indegree centrality (multigraph) was normalized.
399However, the simplified and weighted variant were not correlated with the two courses (C4 &
400C10) and positively correlated with the remaining 10 courses. The notable difference is that C2
401(in the simplified configuration) showed significant positive correlation (r = 0.41, p < 0.01)
402compared to (r = 0.22, p = 0.13) in the non-normalized version. These results indicate that the
403multigraph indegree (whether normalized or not) produces a consistent stronger correlation
404with grades regardless of the studied course or the batch. This also demonstrates that

Fig. 3 Plot of indegree centrality correlation coefficient with performance in each course *Each significant
correlation is plotted against the Y-axis in each course. Non-significant correlations are plotted as 0 on the Yaxis.
The plot shows the multigraph (blue line) is consistently positively and significantly correlated in the 12 studied
courses in both plots (normalized and raw).
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405normalization offers some improvement as C2 became significantly correlated after
406normalization.

407Outdegree centrality

408Similar to the indegree centrality, the correlation between outdegree centrality (calculated
409with the multigraph method) proved to be consistently positively correlated with student
410performance in all courses, with a higher correlation coefficient in 10 courses compared to
411other configurations; the coefficient ranged from r = 0.57, p < 0.01 to r = 0.78, p < 0.01. In
412the simplified configuration, outdegree was correlated with six courses only (C1, C5–8,
413C11), with a correlation coefficient that ranged from (r = 0.34, p = 0.02) to (r = 0.73,
414p < 0.01). In the weighted configuration, the correlation was positively significant in six
415courses (C1, C 5–8 & C11), with a coefficient that ranged from r = 0.32, p = 0.02 to r =
4160.78, p < 0.01, while negatively and significantly correlated in two courses C9 and C10
417(Fig. 4).
418Similarly, when the outdegree was normalized, in the multigraph configuration, the corre-
419lation was consistently and significantly positive in all examined courses. In the simplified
420configuration, the correlation was relatively better than the ‘raw’ results and showed a positive
421correlation in eight courses, compared to six. The weighted variant demonstrated a positive
422correlation in six courses (C1, C5–8 & C11) and a negative correlation in C10. Both the
423simplified and weighted variant showed slightly better results in terms of the number of
424positive correlations.
425In summary, the results show that the multigraph outdegree is the most robust and has the
426highest correlation with performance (Fig. 4). Normalization by group size improved other
427configurations.

Fig. 4 A plot of outdegree centrality correlation coefficient with performance in each course *Each significant
correlation is plotted against the Y-axis in each course. Non-significant correlations are plotted as 0 on the Y-axis.
The plot shows the multigraph (blue line) is consistently positively and significantly correlated in the 12 studied
courses in both plots (normalized and raw).
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428Closeness centrality

429An almost similar pattern to indegree and outdegree centralities was observed in closeness
430centrality. The multigraph configuration was positively and significantly correlated with
431student performance in eleven courses with a correlation coefficient that ranged from r =
4320.57, p < 0.01 to r = 0.74, p < 0.01 except for C8 (r = −0.032, p = 0.82). The simplified
433configuration was positively correlated in seven courses (C1, C2–4, C9, C10 & C12),
434negatively and significantly correlated in C8 (r = −0.52, p < 0.01), and non-significant in four
435courses (C5–7, & C11).
436However, the normalized closeness centrality was more consistent than the ‘raw’ methods.
437In the multigraph method, normalized closeness centrality was positively correlated with
438student performance in eleven courses (except for C8); the simplified configuration was
439statistically significant in nine courses (C1–7, C9 & C10), and non-significant in two courses
440(C8, C11), while negative in one course (C12). While the weighted variant was positively
441correlated with performance in four courses (C2–4, C10), it was negatively correlated in C12
442and insignificant in the other courses. The raw centralities (Fig. 5) showed inconsistent results
443among courses except for the multigraph configuration. In summary, the multigraph config-
444uration produces the most consistent results in most courses, especially when normalized by
445group size.

446Betweenness centrality

447Contrary to the previous centralities, betweenness centrality in all configurations was largely
448inconsistent, showing only C8 as positively and significantly correlated with student perfor-
449mance in the multigraph configuration (r = 0.35, p < 0.01) and similarly in the normalized
450multigraph configuration (r = 0.33, p = 0.02), while negatively and significantly correlated in

Fig. 5 A plot of closeness centrality correlation coefficient with performance in each course. *Each significant
correlation is plotted against the Y-axis in each course. Non-significant correlations are plotted as 0 on the Yaxis.
The plot shows the multigraph (blue line) is consistently positively and significantly correlated in the 12 studied
courses in both plots (normalized and raw)
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451C5, C7, C9 and C10 in the multigraph configuration, and similarly in the normalized variant in
452C5, C7 and C9. Other configurations showed either negative correlations (e.g., C2, C5 & C10)
453in the simplified configuration or insignificant correlation (C6–9). The simplified normalized
454betweenness centrality was statistically insignificant in all courses (Fig. 6).

455Eigenvector

456The eigenvector centrality was positively and statistically significant in 11 courses in the
457multigraph configuration, as well as the simplified configuration, except for C2. In the
458weighted example, it was statically and positively significant in 10 courses, except C2 and
459C8 (Fig. 7). Interestingly, regardless of the configuration, the normalized eigenvector centrality
460was statistically and positively correlated with performance in all courses, pinpointing the
461robustness and consistency of eigenvector centrality in different network configurations.
462What are course network structural factors that could explain the variability of findings?
463We plotted the centrality measures along with the course characteristics as it may offer a
464clue to why some predictions have not been accurate in some courses. As seen in Fig. 8, C2
465had fewer interactions than all other courses (n = 439), as well as the insignificant correlations
466on simplified indegree, outdegree, and eigenvector centrality. It was also statistically insignif-
467icant in the weighted outdegree and Eigen centralities. In C10, which was mostly either
468insignificant or negatively correlated in most configurations, the count of interactions was
469also low (n = 567). One can see the mixed results for C4 as well with a low count of
470interactions (810).

471Discussion and conclusions

472SNA and LAmethods are useful to uncover several aspects of the students’ collaborative roles,
473including cooperative behavior, brokerage of information, reach and sphere of influence, as

Fig. 6 A plot of betweenness centrality correlation coefficient with performance in each course
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474well as mapping the relations to other collaborators (learners and teachers) through visualiza-
475tions (Saqr et al. 2018a Q8). The accurate identification and further adequate (in-time) learner
476support in CSCL settings can and should significantly enhance the success of the collaboration
477process, thus creating better conditions for students’ learning, ultimately leading to their
478improved academic performance. This study builds on previous research efforts (Fincham
479et al. 2018; Wise et al. 2017) and continues the line of methodological refinement. In doing so,
480we have investigated the methods that reflect an accurate view of students’ roles and

Fig. 7 A plot of Eigenvector centrality correlation coefficient with performance in each course

Fig. 8 A plot of course network properties and different centrality measures to show the relationship between
centrality measures and their corresponding course characteristics
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481interactions that constitute the relational aspect, a key component of both participation – and
482social dimensions of collaborative learning.

483How do different network configurations influence the reproducibility
484and robustness of centrality measures as indicators of student learning
485in collaborative learning settings?

486This study has examined how different network configurations influence the reproducibility
487and robustness of centrality measures as indicators of student learning – especially the
488participation and social dimensions of collaborative learning – in CSCL settings. Overall,
489our findings indicate that the multigraph configuration produces the most consistent and
490robust centrality measures, suggesting that these measures can be used to generalize relevant
491results across courses. One explanation to this finding is the fact that such a configuration
492retains the information about the frequency of students’ participation and hence presents a
493more accurate view of students’ efforts, especially in quantitative centrality measures (i.e.,
494indegree and outdegree), compared to the weighted and simplified configurations. It is
495important, since the frequency of interactions among students bears valuable information
496about learner engagement (both static and continuous) and is “regarded as an important
497indicator of knowledge construction” (Weinberger and Fischer 2006, p. 73).
498Moreover, research has shown that reciprocity is an important building block of social and
499learning networks: the frequency of reciprocal interactions are indicative of the strength of
500mutual trust and the perceived value of the interaction (Block 2015). Our results have shown
501that simplifying the network (i.e., removing multiple edges and loops) is reductionist. The
502simplified configuration came next in robustness. While it accurately reflects (and possibly
503rewards) the diversity and multiplicity of students’ connections, it turned out that it may have
504been over-simplifying and thus detrimental to the quality it is expected to represent (i.e., the
505participatory dimension of collaborative learning). These results are congruent with earlier
506research efforts, in which simplified network correlations between centrality and final grade
507were used (Traxler et al. 2016).
508The findings have also demonstrated that post size was not a reliable weight. A possible
509explanation may be the possibility that students who posted large chunks of text tended to care
510less about text quality and/or they copy-pasted content from the Internet. Nonetheless, such
511posts received fewer interactions. Therefore, the indegree centrality (i.e., how students value
512the post and select to reply to it, giving rise to high indegree) is more important than the mere
513count. While we have tested the weighted network by post size, it may be useful to try other
514types of weight.2

515Similar results were found with closeness centrality. The multigraph configuration was
516found to be far more robust in most courses, confirming the idea that reducing networks may
517be at the cost of the consistency. Betweenness centrality showed the least consistent results
518among all centrality measures in all configurations. On the contrary, eigenvector centrality
519showed the most robust centrality across all configurations. Regardless of the configuration
520and the way it was represented, eigenvector centrality was positively correlated and statisti-
521cally significant with student performance. As eigenvector centrality takes into consideration

2 An initial analysis of this study tested the weight as a function of number of duplicate links, which resulted in
identical results for the indegree and outdegree centralities, and similar (but less robust) correlations for other
centrality measures.
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522the strength of connections of all connections of a student, it samples both the size and the
523quality of the network of the students. Such a range of data makes the centrality more robust to
524changes compared to the local centrality measures (i.e., indegree and outdegree).
525A learner who interacts with ten peers has the possibility to have a larger network size than
526another in a group of five, and consequently, a higher centrality measure. This imbalance
527requires researchers to carefully consider normalization when comparing students in groups or
528classes of different sizes. Our results have shown an improvement of centrality robustness with
529normalization and pinpoint that the number of interactions in a course may affect the
530robustness of the derived centrality measures. Consequently, caution should be exercised in
531interpreting centrality measures in courses with a small number of interactions or low
532engagement. However, it is important to note that eigenvector centrality was consistently
533positively correlated even in such small courses. Therefore, the answer to the first research
534question is: whereas closeness and betweenness centralities are more sensitive to network
535configuration methods, degree and eigenvector centralities are more robust measures, espe-
536cially when calculated with the multigraph configuration. Our findings also support multigraph
537as the recommended configuration in general.

538Is there guidance on which centrality to choose to better understand
539the participatory and social dimension in CSCL environments?

540As discussed earlier, the degree centralities in the multigraph configuration reflect the efforts
541and contributions of students and, therefore, should be considered when evaluating the
542participatory dimension of collaborative learning. The eigenvector centrality was found to be
543a more reliable measure of the social dimension of CSCL because it considers both the number
544and the strength of relationships. Our results demonstrated that eigenvector centrality was the
545most consistent measure of the social dimension, demonstrating a consistently positive and
546significant correlation in all selected network configurations. These findings stress the
547robustness and the reliability of this method as an indicator of building sound and valuable
548social relationships that are considered as an essential element of the collaborative process.
549Kreijns et al. (2013) point out that although a focus on the social space might emphasize the
550structural aspects, “these structures must exist to some degree before a group may become a
551performing group” (p.234). In other words, stimulating and building valuable and sound
552relationships serves as a catalyst for achieving the promise and potential of CSCL. In
553summary, the following answers the study’s second research question: Whereas degree
554centralities are robust indicators of students’ participation in CSCL, eigenvector centrality
555reliably reflects students’ social positioning and relationships.

556What course network structural factors could explain the variability of findings?

557In our study, we found that courses with a low number of interactions had inconsistent results
558regarding the participatory dimension, but not so for the social dimension, as reflected by
559eigenvector centrality. This stresses the importance of active social interactions in the course
560before relying on SNA measures. Of course, this is not the only factor, the accuracy of
561students’ assessment as measured by test grades depends on students’ characteristics (e.g.,
562knowledge, motivation and effort), task characteristics and assessment methods (e.g., exam
563difficulty, the standards and criteria of the assessment) as well as on teacher expertise and
564accuracy of teacher judgment (Südkamp, Kaiser and Möller 2012). Therefore, the

International Journal of Computer-Supported Collaborative Learning

JrnlID 11412_ArtID 9322_Proof# 1 - 03/07/2020



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

565inconsistency of results may be partly a reflection of the quality and accuracy of the assessment
566process. Further research may need to explore the reliability and validity of learning measures
567in combination with reliability and validity of interaction/social relation measures.

568Implications

569Centrality measures have been used to identify students’ roles (e.g., leaders, collaborators,
570animators or peripherals). Correctly identifying these roles is therefore critical to inform
571learners and their collaborative partners about their own and others’ participation on the one
572hand, and the teacher or instructor on the other. Similarly, centrality measures have been used
573to indicate students’ engagement and effort to build on peer contributions in knowledge co-
574construction. While contributions by the learners serve as an indicator of the effort of
575participation, some contributions may be connected, elaborated and synthesized more inten-
576sively than others (Hong et al. 2010). For example, the results of this study indicate that
577receiving interactions may be more indicative of the value of an interaction over the interaction
578size. Consequently, it is important to compute valid centrality measures and to select the
579appropriate measures that allow exploring complex dynamics and patterns between contribu-
580tions in productive knowledge building. Another implication is that researchers aiming to
581implement a predictive algorithm in the context of CSCL could find guidance in the methods
582examined in this study (e.g., which centrality measures are replicable and which are robust
583against course variations). In summary, the study emphasizes that network centralities can be a
584reliable indicator for students’ participatory efforts, social relations as well as a predictor of
585their performance when calculated with appropriate methods (Kreijns et al. 2013).
586The results emphasize the need for researchers who report on SNA to present in detail their
587methodological choices so that research is better able to be compared, replicated, and
588ultimately generalized. Based on this study’s results, we suggest that the following items
589should be reported:
590Tie definition: what is considered to represent a tie and any assumption made for a tie
591definition;
592Direction: whether the network is directed, undirected or mixed;
593Network mode: e.g., unipartite or bipartite;
594Weight: network is weighted, simplified or a backbone with a certain threshold;
595Number of nodes, edges in each of the studied networks;
596Aggregation method and duration of aggregation;
597Software and version used for calculation of network centralities;
598Software used for network visualization and layout;
599Community finding method and parameters used.

600Future research

601In this study, we have used specific settings of problem-based learning design in medical
602higher education where research on LA is lacking (Saqr 2015, 2018). Since the contextual
603aspect is important in SNA studies (Gašević et al. 2016), we suggest that future research
604should replicate this study in other disciplines, with other kinds of learning designs, as well as
605in other educational levels and forms (e.g., K-12 education and MOOCs). This will enable
606better understanding of whether the multigraph configuration generates equally robust and
607consistent centrality measures of student learning across divers CSCL settings. Moreover,
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608simulation is an area that has not been explored in education research. Consequently, it would
609be interesting to simulate different network structures and study how different simulations
610influence learning. Content analysis could be incorporated in graph measures as a weight for
611ties. It can also be used as a validation of the different assumptions inherent within different
612centrality measures.
613In sum, while proving the multigraph configuration produces the most consistent and robust
614centrality measures of student learning, we call for further research to test other network
615configurations, apply other tie definitions, and verify our results in similar learning settings, or
616some others, and further build upon them to continue the line of methodological refinement in
617the fields of social network analysis and learning analytics.
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