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11Abstract While some studies found positive effects of collaboration on student learning in
12mathematics, others found none or even negative effects. This study evaluates whether the
13varying impact of collaboration can be explained by differences in the type of knowledge
14that is promoted by the instruction. If the instructional material requires students to reason
15with mathematical concepts, collaboration may increase students’ learning outcome as it
16promotes mutual elaboration. If, however, the instructional material is focused on practicing
17procedures, collaboration may result in task distribution and thus reduce practice
18opportunities necessary for procedural skill fluency. To evaluate differential influences of
19collaboration, we compared four conditions: individual vs. collaborative learning with
20conceptual instructional material, and individual vs. collaborative learning with procedural
21instructional material. The instruction was computer-supported and provided adaptive
22feedback. We analyzed the effect of the conditions on several levels: Logfiles of students’
23problem-solving actions and video-recordings enabled a detailed analysis of performance
24and learning processes during instruction. In addition, a post-test assessed individual
25knowledge acquisition. We found that collaboration improved performance during the
26learning phase in both the conceptual and the procedural condition; however, conceptual
27and procedural material had a differential effect on the quality of student collaboration:
28Conceptual material promoted mutual elaboration; procedural material promoted task
29distribution and ineffective learning behaviors. Consequently, collaboration positively
30influenced conceptual knowledge acquisition, while no positive effect on procedural
31knowledge acquisition was found. We discuss limitations of our study, address
32methodological implications, and suggest practical implications for the school context.
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36Introduction

37Current standards for teaching mathematics emphasize the importance of collaborative
38learning for students’ knowledge acquisition (KMK 2004; NCTM 2000). Indeed, many
39studies have demonstrated the potential effectiveness of collaboration for improving
40problem-solving and learning (Berg 1994; Ellis et al. 1993; Slavin 1996). The positive
41effect of collaboration can be explained by the promotion of elaborative meaning-making
42activities. In a collaborative setting, students provide explanations to their partners
43(cf. Hausmann et al. 2004; Webb 1989); this requires them to make their thinking explicit
44and verbalize their knowledge. Often they have to reformulate and clarify their statements
45if their partner has difficulties in understanding their explanations. This verbalization and
46reformulation of knowledge demands elaboration of the learning content (O’Donnell
471999) and thus can promote knowledge acquisition. Furthermore, joint elaboration of the
48learning material can promote learning. Particularly in the domain of mathematics,
49knowledge co-construction has been shown to yield improved student achievement (Berg
501994). Finally, students can learn by asking for help and receiving explanations from a
51partner (Webb 1989). For instance, clarification questions enable the student to fill
52knowledge gaps and correct misconceptions.
53Nevertheless, beneficial effects of collaboration on knowledge acquisition cannot always
54be found (e.g. Souvignier and Kronenberger 2007). Lou et al. (1996) evaluated the impact
55of collaboration in a meta-analysis. Although most results were in favour of collaborative
56learning, about a fourth of the results showed none or even negative effects when compared
57to individual learning. In earlier studies, we found indications that the impact of
58collaboration on mathematical knowledge acquisition may depend on the type of
59knowledge that students are trying to acquire during collaboration (Diziol et al. 2007,
602009). When students collaborated on conceptual problem-solving steps, they talked to
61each other and provided mutual explanations. This positive collaborative behavior yielded
62improved learning outcome in a conceptual post-test when compared to individual learning
63(Diziol et al. 2007). However, when students collaborated on procedural problem solving-
64steps, they didn’t engage in mutual elaboration. Instead, they often took turns in solving the
65different problem-solving steps. In other words, the differences in the learning material
66seemed to trigger different types of collaborative behavior that were not equally effective
67for promoting student learning.
68While the observations collected in these earlier studies suggested that the type of
69knowledge that is targeted by the learning material may affect the success of collaborative
70learning, we had not yet investigated the differential impact of collaboration on knowledge
71acquisition experimentally. The present study aims at increasing our understanding of
72differential effects of collaboration on learning in mathematics by empirically comparing
73individual and collaborative learning with conceptual and procedural instructional material.
74The instruction was computer-supported and provided adaptive feedback in the form of
75error-flagging and hint messages. The learning environment automatically recorded
76students’ problem-solving in a logfile and thus enabled us to analyze the learning processes
77in detailed fashion. In the following sections, we will give a short overview of the
78distinction between conceptual and procedural knowledge acquisition in algebra, the
79mathematical domain of our study. Then we will discuss results regarding these two
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80knowledge types from the literature on collaborative learning. We will conclude the
81theoretical background with an overview of our hypotheses and dependent variables.

82Conceptual and procedural knowledge

83Literature on knowledge acquisition in mathematics often distinguishes between conceptual
84and procedural knowledge. Conceptual knowledge is described as the understanding “of the
85principles that govern a domain and of the interrelations between pieces of knowledge in a
86domain” (Rittle-Johnson and Alibali 1999, p. 175). Particularly important concepts in the
87area of algebra, the domain of the present study, are the equation, the variable, and the
88constant term. These concepts can be represented in different formats: verbally in a story
89problem (“they earn $2 per glass sold”), graphically in a coordinate plane, algebraically in
90an equation (“+ 2x”), or in a table (cf. Brenner et al. 1997). One important aspect of
91students’ conceptual understanding is reflected in their ability to flexibly translate between
92these representations (Brenner et al. 1997; Mevarech and Stern 1997).
93Procedural knowledge can be defined as students’ ability to execute stepwise action
94sequences to find the solution to a problem (Rittle-Johnson and Alibali 1999). By
95repeatedly solving tasks that require these procedures, students can gain skill fluency.
96Typical examples from algebra are manipulation problems such as solving equations for x
97(Brenner et al. 1997; Nathan et al. 1994). If students know the relevant procedures, they can
98easily solve these tasks.

99The influence of collaboration on conceptual and procedural knowledge acquisition

100For several reasons, research on collaborative learning so far does not support definite
101conclusions concerning the differential influence of collaboration on conceptual and
102procedural knowledge acquisition. The already mentioned meta-analysis by Lou et al.
103(1996) showed that positive results of collaboration can mainly be found in studies that
104provide additional instruction to collaborative conditions that is not given to students
105learning individually. Thus, it is unclear if the positive effect is due to the collaboration or
106due to the additional instruction. For instance, in a study by Berg (1994), a collaboration
107script supported dyadic problem-solving and prompted students to engage in mutual
108explanations. Post-test comparisons showed that students who learned collaboratively
109outperformed individual learners. However, as the script instructions were not provided to
110students learning individually, the positive effect of collaboration could also be ascribed to
111the instruction to elaborate on the underlying mathematical background.
112Another area of confusion concerns the test items used for assessing learning. Often, the
113test material does not separately assess the two knowledge types, but both conceptual and
114procedural knowledge are required to solve the problems (e.g. Diziol et al. 2007). Thus, it is
115not clear from the test results if collaboration had a positive influence on either conceptual
116or procedural knowledge, or both. The present study aims at solving these confusions by
117distinguishing more clearly between conceptual and procedural knowledge both in
118instructional and test materials.
119We hypothesize that conceptual and procedural instructional material elicits different
120types of collaborative learning processes, and that the elicited learning processes are not
121equally effective in promoting student learning. Conceptual instructional material elicits
122elaborative meaning-making processes. Particularly the translation between different
123conceptual representations is challenging for students (Brenner et al. 1997), thus students
124have to reason about the learning content in order to solve problems and to increase their
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125understanding (Hiebert and Wearne 1996; Nokes and Ross 2007). For instance, when
126students solve algebra word problems, they have to reflect on the translation of the verbal
127problem description into the algebraic equation. Thereby, the application of simple
128translation rules based on keywords may be misleading (cf. Nathan et al. 1992; e.g., “the
129depth increases by 3 m/h” may have to be translated to “−3x”, even though the word
130“increase” normally refers to a positive variable term). Instead, students have to correctly
131represent the problem scenario described, extract the important information, and transform
132this information into a different, that is, a mathematical representation format (Staub and
133Reusser 1995). Collaborative learning settings have the potential to increase beneficial
134elaborative learning mechanisms as students have to make their thinking explicit to their
135learning partner (Teasley 1995). Therefore, collaborative learning can be expected to
136promote learning with conceptual instructional material and to yield improved conceptual
137knowledge acquisition when compared to individual learning.
138In contrast, procedural instructional material focuses students’ attention on step-wise
139problem-solving procedures. In a collaborative setting, the step-wise procedures entail the
140danger that students will take turns in solving the problem-solving steps: As soon as one
141student knows the solution for a problem-solving step, he or she may enter it in the system.
142In other words, collaborative learning with procedural instructional material may lead to a
143division of practice opportunities between partners. However, as practice and the
144application of the problem-solving procedures is crucial to gain procedural skill fluency
145(Anderson 1983), the reduced amount of practice in a collaborative setting may be harmful
146for procedural knowledge acquisition.

147Hypotheses

148To assess the effect of collaboration on conceptual and procedural knowledge acquisition,
149we compared four conditions: individual versus collaborative learning with conceptual
150instructional material, and individual versus collaborative learning with procedural
151instructional material. The instruction was implemented in a computer-supported
152environment. Addressing the critique that previous research on collaborative learning in
153mathematics did not distinguish between conceptual and procedural knowledge in the test
154material, we assessed the effect of the four conditions on both conceptual and procedural
155knowledge acquisition.
156Our main hypothesis concerns the differential impact of collaboration: We hypothesize
157that collaborative learning with conceptual instructional material elicits mutual elaboration
158on mathematical concepts and thus promotes students’ conceptual understanding when
159compared to individual learning. In contrast, we expect that collaborative learning with
160instructional material that focuses on practicing procedures may promote task distribution
161and thus yield similar or less procedural skill fluency than individual learning.
162Furthermore, we expect a condition specific main effect of the instructional material on
163students’ knowledge acquisition; in other words, conceptual instruction should mainly
164improve conceptual knowledge acquisition, while procedural instruction should mainly
165improve students’ procedural knowledge acquisition. This hypothesis also serves as
166manipulation check to evaluate the effectiveness of the instructional material.
167We investigated the effect of collaboration on learning in mathematics at different levels.
168Student performance during the learning activity is usually the first observable indicator for
169the effectiveness of collaboration in the school setting, and thus is often used by teachers to
170decide whether to use a collaborative learning setting or not. However, from an educational
171viewpoint, testing their individual knowledge acquisition is also of great importance in
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172order to determine if students are able to apply their knowledge subsequently. Furthermore,
173to better understand possible differential effects of collaboration on student learning, we
174also have to evaluate their learning and interaction processes, analyze how these processes
175relate to the learning outcome, and investigate under which conditions collaboration
176increases beneficial learning processes.

177Method

178Participants and study design

179Seventy-nine students participated in the study. Participants were recruited from two local
180high schools on a voluntary basis and got paid for their participation. As one of the schools
181was a girls’ school, we restricted participation to female students in order to avoid a
182confounding of gender and school. Students were in grade 8 (age M=13.18, SD=.50) and
183had already basic experience with the task domain. A two-factorial design was implemented
184(see Table 1): instructional material (conceptual vs. procedural) and setting (individual vs.
185collaborative). Prior to the study, we asked students which class mate they would
186particularly like to work with if they were selected for one of the collaborative conditions.
187Then, we randomly assigned these potential pairs to the four conditions, distributing
188students from the two schools evenly across study conditions (block randomization). This
189resulted in the following numbers: conceptual individual learning (19 students), conceptual
190collaborative learning (20 students), procedural individual learning (20 students), and
191procedural collaborative learning (20 students). In the collaborative conditions, students
192collaborated with the partner they had chosen; in the individual conditions, both students of
193a potential pair worked individually.
194In order to enable us to compare the learning processes in the individual and the
195collaborative conditions, half of the students in both the conceptual individual and the
196procedural individual condition were randomly selected and asked to think aloud while
197solving the problems. We recorded audio and video during the learning phase: in the
198individual conditions, we recorded individual students thinking aloud, and in the
199collaborative conditions, we recorded students interacting with each other in dyads. To
200reduce the risk of student reactivity, the think aloud directions followed the guidelines
201described in Ericsson (2003). Students first received a short instruction to the think-aloud
202method that asked them to simply verbalize each thought that emerges. To familiarize them

t1.1 Table 1 Study design and procedure

t1.2 Instructional material Conceptual Procedural

t1.3 Setting Individual N=19 Collaborative N=20 Individual N=20 Collaborative N=20

t1.4 Pre-test Individual problem-solving (paper-pencil, order counterbalanced across conditions):
conceptual and procedural problem-set

t1.5 Learning phase Individually or in dyads: conceptual
instruction (tutored learning
environment)

Individually or in dyads: procedural
instruction (tutored learning
environment)

t1.6 10-min break

t1.7 Post-test Individual problem-solving (paper-pencil, order counterbalanced across conditions):
conceptual near and far transfer problem-set procedural near and far transfer
problem-set
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203with the method, they practiced thinking-aloud while solving a sorting task that was not
204related to mathematics and the learning content of the study. In the sorting task, a picture
205story had been mixed up, and students were asked to find the correct order of the pictures.
206If students stopped talking, the experimenter reminded them to continue verbalizing their
207thoughts. Statistical comparison of students’ performance during the learning phase and of
208their learning outcome (see list of dependent variables, Table 2) confirmed that thinking
209aloud did not influence student performance and learning outcome: Neither in the
210procedural individual nor in the conceptual individual condition did we find differences
211between students thinking aloud and the other individual students (for all analyses, p>.10).
212We therefore combined the think aloud students and non-think aloud students within the
213respective individual conditions for the quantitative analyses.

214Procedure

215The study procedure consisted of three parts: pre-test, learning phase, and post-test (see
216Table 1). In order to assess prior knowledge, participants first worked individually on a pre-
217test that contained conceptual and procedural problems. The test was delivered in paper and
218pencil fashion. For the learning phase, students moved to the computer where they received
219instruction according to their condition. In the collaborative conditions, two students
220worked together on one computer to solve the tasks (i.e., face-to-face interaction). After the
221learning phase, there was a short break before students took the post-test. As was the case
222for the pre-test, the post-test was solved individually on paper. It consisted of four problem-
223sets: a near and a far transfer problem-set for each of the two knowledge types. Students
224solved the problems at their own pace both during pre- and post-test and during instruction.
225In total, the experiment lasted about 140 min.

226Learning environment and instructional material

227We implemented the instruction during the learning phase in a computer-supported learning
228environment. This implementation enabled us to provide tutoring support to students’
229problem-solving actions, a form of instructional support that has been shown to be
230particularly beneficial for student learning. A particularly prominent example for the
231success of tutoring environments are the Cognitive Tutors for mathematics instruction (e.g.

t2.1 Table 2 Overview of dependent variables

t2.2 Dependent variable Operationalization Data source

t2.3 Learning phasea Performance Error rate Logfiles

t2.4 Learning process Time before action

t2.5 Time after error

t2.6 Elaboration after errors Audio recordings

t2.7 Student interaction after errors

t2.8 Test phase Conceptual knowledge acquisition Conceptual near transfer Post test scores

t2.9 Conceptual far transfer

t2.10 Procedural knowledge acquisition Procedural near transfer

t2.11 Procedural far transfer

a Depending on the condition, students learned either with conceptual or procedural instructional material
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232Algebra, Geometry and Integrated maths) that were developed at Carnegie Mellon
233University, Pittsburgh. These tutoring curricula are widely used in regular classrooms
234across the US to teach mathematics at the high school level and have been shown to
235improve knowledge acquisition when compared to traditional classroom instruction (e.g.
236Koedinger et al. 1997). Their success is based on an evaluation of the student’s knowledge
237that enables adaptive support tailored to the student’s needs. The Tutors provide immediate
238error feedback, answer to help requests, and select problems that target skills that are not
239yet mastered by the student.
240Similar to the Cognitive Tutors, the learning environment in our study was designed to
241provide adaptive support to students. We implemented our learning environment with the
242Cognitive Tutor Authoring Tools (CTAT; Aleven et al. 2009), a software that enables
243researchers and teachers to author intelligent tutoring behavior. The learning environment
244provided immediate feedback to student actions by marking errors in red and correct
245answers in green. Furthermore, it automatically launched a hint after the third incorrect
246student attempt to ensure that students would not get stuck during problem-solving (see
247Fig. 2). The hint message told students the correct solution to the problem-solving step. To
248prevent students from exploiting this help functionality, they were not told about it. In
249contrast to the Cognitive Tutors, a functionality to ask for help and an automatic selection
250of problems was not implemented in our environment. The tutored problem-solving was
251alternated with worked example study. The learning environment automatically logged all
252student actions to allow a detailed analysis of the learning processes.
253The task domain of the study was algebra, more specifically linear functions. The
254learning material in the conceptual and procedural conditions differed in the following way:
255In the conceptual conditions, students were asked to derive linear equations from story
256problems. For instance, in the story problem in Fig. 1, Peter is scuba-diving and students
257were requested to find an algebraic equation that represented his depth. They were,

problem description (translation into English):  

Peter is scuba-diving in the Red Sea. The Red Sea has a maximum depth of 2604 meters. Peter has  
already reached a depth of 17 meters. If he continues diving down at a rate of 2 meters per minute, how  
long does it take him to reach a depth of 30 meters? 

student solution marked as correct 

Fig. 1 Screenshot of the conceptual learning environment
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258however, not asked to solve the equation. The problems were of increasing difficulty,
259reaching from simple story problems that only contained a constant term to story problems
260with variable and constant terms, several variable terms, negative constant or variable
261terms, and brackets. Students in the conceptual conditions received one worked example for
262each level of difficulty and altogether solved 15 problems on their own. The conceptual
263worked examples focused on the translation of verbal concept representations into algebraic
264concept representations.
265In the procedural conditions, students practiced solving linear equations (see Fig. 2).
266Again, the problems had increasing difficulty, reaching from simple equations with one
267variable and one constant term to equations with negative constant terms, negative variable
268terms, several variable terms (e.g. 8xþ 5þ 6x ¼ 12), and subtraction and multiplication
269brackets. As in the conceptual conditions, students received one worked example for each
270level of difficulty and altogether solved 15 problems on their own. The worked examples
271focused on the procedures necessary to solve the equations. In both the conceptual and the
272procedural conditions, students could only proceed to the next problem once they had
273correctly solved the problem at hand.

274Dependent variables

275To gain a deeper understanding of the effects of collaboration, we evaluated the effects of
276our experimental conditions at several levels based on different data sources: logfiles, audio
277recordings, and post-test score (for an overview, see Table 2). The performance of students

student solution attempt highlighted as incorrect 

hint message following 3rd unsuccessful student attempt: 
“Please write ‘15x+10’ in the yellow field” 

Fig. 2 Screenshot of the procedural learning enviornment
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278during the learning activity served as first indicator for the effectiveness of collaboration
279when compared to an individual setting. However, good collaborative performance may not
280necessarily promote individual knowledge acquisition. Therefore, our study also evaluated
281the impact of collaboration on students’ learning processes during instruction, and on their
282learning outcome (i.e., conceptual and procedural knowledge acquisition) as measured by
283the post-test. Students’ prior knowledge was analyzed as a control variable based on the
284pre-test score. The following sections describe the operationalization of these dependent
285variables in more detail.

286Student performance during learning phase: Error rate As a first step in evaluating the
287influence of the learning setting (individual vs. collaborative) on knowledge acquisition in
288mathematics, we assessed the performance during the learning phase based on the variable
289error rate extracted from the log data. This variable measures the relative number of errors
290on the first attempt to solve a problem-solving step. An error rate of 1 indicates that a
291student solved each step incorrectly on the first attempt; an error rate of 0.5 indicates that on
292average, half of the steps were solved incorrectly, half were solved correctly on the first
293attempt; and an error rate of 0 indicates that all steps were solved correctly on the first
294attempt.

295Learning processes: Time variables To validate the process model that underlies the
296hypothesized differential effect of collaboration, we analyzed student learning processes in
297more detail. Particularly, we were interested in assessing if collaboration increased
298beneficial elaboration behavior, or rather promoted task distribution. As a first step to
299answer this question, we evaluated the average time spent before an action and the average
300time spent after an error (measured in seconds). As elaboration takes time, the analysis of
301these variables can serve as indicators of cognitive processes in problem-solving (cf. Diziol
302et al. 2009). Thus, in a collaborative condition longer times before an action could indicate
303mutual elaboration, whereas shorter times could indicate task division. These variables are
304highly objective and can easily be assessed automatically; on the other hand, they leave a
305lot of room for speculation about what actually happened during these times. In a second
306step, we therefore analyzed the actual individual and collaborative learning processes in
307order to disambiguate what was going on.

308Learning processes: Coding analysis of learning from errors To shed further light on the
309results of the log data analyses, we evaluated relevant aspects of the think aloud recordings
310of individual students and of the dialogue of collaborating dyads, using a coding scheme.
311As the analysis of verbal data is very time consuming (Chi 1997; Reimann 2007), we
312concentrated our analysis on one aspect of student learning that has been shown to be a
313particularly important predictor of student learning in intelligent tutoring systems: learning
314processes following errors. Earlier studies have shown that student behavior after errors can
315be critical for successful knowledge acquisition (e.g. Baker et al. 2004). When students
316elaborate on an error and its correction, they can increase their understanding. However,
317when they engage in trial and error behavior, that is, try several different answers until the
318learning environment marks one answer as correct, they cannot capitalize on the learning
319opportunity. We analyzed students’ learning processes around errors, taking into account
320two aspects: elaboration processes and task distribution when trying to correct the errors
321(see also Diziol et al. 2010b). For the analyses, we devised a coding scheme and
322implemented it using the Activity Lens software (Avouris et al. 2007). The software,
323Activity Lens, supports researchers in the analysis of collaborative learning and interaction.
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324Different data sources—for instance, audio, video, and log data—can be entered and
325synchronized. For our analysis, we linked log data from the learning environment with
326video recordings from individual or collaborative problem-solving. The synchronization of
327the data sources enabled us to navigate to relevant sequences of the video (e.g. student
328behavior after errors) for the process analysis.
329In the analysis of elaboration processes after errors, we distinguished between two types
330of errors: errors that were corrected in the subsequent step (error corrected) and errors that
331were followed by a subsequent error (next step incorrect). The following three codes were
332used to specify how errors were corrected: If students elaborated on the error to find the
333correct solution, their problem-solving action was coded as elaboration. If students did not
334verbally elaborate on the error, but remained silent for a while before they corrected the
335error, the action was coded as no elaboration; this code was also applied to utterances
336where the student repeated the problem description aloud or verbalized his or her
337suggestion for the next step without further explanation. If students immediately corrected
338the error without providing an explanation, the action was coded as immediately corrected.
339As several studies by Webb and colleagues have shown (for an overview, see Webb 1989),
340the latter behavior is often detrimental for the partner’s knowledge acquisition in a
341collaborative setting, as she may not understand the error correction without further
342explanation. Similarly, we used three codes to specify student behavior after errors that
343were followed by a subsequent error (next step incorrect). The first and second code,
344elaboration and no elaboration, correspond to the codes for errors corrected; the third code
345trial and error was applied if students exhibited trial and error behavior. To check the inter-
346rater reliability, a second coder reanalyzed eight of the 20 individuals thinking aloud and
347eight of the 20 collaborating dyads, respectively. The inter-rater reliability for the
348elaboration dimension was κ=.77.
349Furthermore, with the variable task distribution (inter-rater reliability κ=.68) we
350evaluated if the two students worked together on getting past the error, or if they
351distributed the task between them: Did students collaborate to correct the error (both), did
352they distribute the task, thus only one student was responsible for the action following the
353error (one), or did they not discuss the error correction at all (none)? This variable was only
354evaluated for the collaborative conditions. If a high amount of behavior after errors were
355coded as both, this would indicate collaborative interaction that could be beneficial for
356learning. If, on the other hand, a high amount of behavior after errors were coded as one or
357none, this would indicate a task distribution that could have a negative impact on the
358individual knowledge acquisition.

359Learning outcome assessed in the post-test After the learning phase students solved a post-
360test on paper. We adapted the test material from an earlier study (Diziol et al. 2009). The
361test consisted of four problem-sets: conceptual near and far transfer and procedural near and
362far transfer. The near transfer problems were structurally equivalent to the problems solved
363during the learning phase; however, now students had to solve the problems on paper
364without receiving tutoring support. For conceptual near transfer, students had to derive
365linear equations from story problems; for procedural near transfer, students were asked to
366solve linear equation problems.
367The problems in the conceptual far transfer problem-set required a reverse translation
368between representations: Students received an equation and several keywords; they were
369instructed to use the keywords to formulate a story problem corresponding to the given
370linear equation. Conceptual understanding should enable students to verbalize the
371functional relationship represented in the equations, that is, to translate the algebraic
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372problem representation into a verbal representation (Brenner et al. 1997). We evaluated the
373concordance between the linear equations and the story problems written by the students
374with scores ranging from 0 to 3. Students received a score of one if the story problem
375contained all relevant values, but there were major errors concerning their functional
376relationship (e.g. if students confused the variable and the constant term), a score of two if
377the story problem contained all relevant values, but there were minor errors concerning their
378functional relationship, and a score of three if the story problem was concordant with the
379algebraic equation. The scoring system was based on the cognitive processes involved in
380story problem solving which are described in Staub and Reusser (1995).
381In the procedural far transfer problem-set, students received erroneous problem-
382solutions of a fictitious student and were asked to find the errors. The problem-solutions
383contained typical computational errors such as combining constant and variable terms when
384solving equations for x. Procedural knowledge should help students find these errors.
385To evaluate inter-rater reliability, a second coder analyzed a quarter of the tests, yielding
386good agreement on all scales (for the conceptual near transfer problem-set and the
387procedural problem-sets, κ=.88 each; for the conceptual far transfer problem-set, ICC2,1

388r=.97). For each of the four problem-sets, we added the points a student had achieved in
389the single tasks to one score. The maximum score that could be reached differed between
390problem-sets. To support the reader’s understanding, we use percentages of the maximum
391score that were reached by the students to report the results.

392Prior knowledge as covariate We evaluated prior knowledge in algebra with a pre-test. The
393pre-test consisted of a conceptual and a procedural problem-set and was solved on paper.
394The problems were structurally equivalent to the problems of the learning phase, but had a
395lower difficulty level to avoid de-motivating and frustrating students. We added the
396z-transformed conceptual and procedural pre-test scores to a combined measure of prior
397knowledge in algebra. Conditions did not differ concerning their prior knowledge. As prior
398knowledge correlated significantly with students’ performance during the learning phase
399and with their learning outcome in the post-test, we included it as covariate (see also results
400of the covariance analyses, Tables 3, 4, 5, 6).
401

t3.1 Table 3 Learning phase: comparison of conditions with conceptual instructional material

t3.2 Setting: Individual Collaborative F p η2

t3.3 Performancea

t3.4 Error rate

t3.5 M(SD) .44 (.17) .31 (.07) Prior knowledge 12.37 <.01** .32

t3.6 Setting 3.37 .08+ .12

t3.7 Time variablesb

t3.8 Time before action

t3.9 M(SD) 64.16 (18.66) 84.50 (26.74) Setting 5.76 .02* .18

t3.10 Time after error

t3.11 M(SD) 44.79 (20.18) 74.30 (47.38) Setting 5.59 .03* .17

For error rate, less means better
a df = 1,26 for performance variables. b df = 1,27 for time variables

**p<.01; *p<.05; +p<.10
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402Results

403Learning phase

404We evaluated both performance and process data from the learning phase. The instructional
405material in the conceptual and the procedural conditions was not directly comparable (e.g.
406different type of tasks, different number of steps per problem, …). We therefore compared
407individual and collaborative learning separately within the conceptual conditions and within
408the procedural conditions. For the collaborative conditions, the analyses were based on
409dyadic student data (i.e. one data point per dyad).

410Performance during the learning phase We employed an analysis of variance to evaluate
411the impact of collaboration on student performance (error rate) during the learning phase.

t5.1 Table 5 Post-test: comparison of students’ conceptual knowledge acquisition

t5.2 Instructional material: Conceptual Procedural F p η2

t5.3 Setting: Ind Coll Ind Coll

t5.4 Conceptual near transfer

t5.5 M 39% 51% 23% 22% Prior knowledge 34.00 <.01** .32

t5.6 SD 14% 17% 23% 15% Factor instruction 41.62 <.01** .36

t5.7 Factor setting .72 .40 .01

t5.8 Interaction 4.46 .04* .06

t5.9 Conceptual far transfer

t5.10 M 57% 63% 45% 38% Prior knowledge 17.13 <.01** .19

t5.11 SD 26% 24% 22% 19% Factor instruction 13.07 <.01** .15

t5.12 Factor setting .34 .56 .00

t5.13 Interaction 2.78 .10+ .04

df = 1,74 for all analyses

**p<.01; *p<.05; +p<.10

t4.1 Table 4 Learning phase: comparison of conditions with procedural instructional material

t4.2 Setting: Individual Collaborative F p η2

t4.3 Performancea

t4.4 Error rate

t4.5 M(SD) .15 (.09) .09 (.04) Prior knowledge 7.43 .01** .22

t4.6 Setting 4.80 .04* .15

t4.7 Time variablesb

t4.8 Time before action

t4.9 M(SD) 17.70 (3.83) 14.70 (3.06) Setting 4.64 .04* .14

t4.10 Time after error

t4.11 M(SD) 22.10 (7.53) 16.80 (11.54) Setting 2.30 .14 .08

For error rate, less means better
a df = 1,27 for performance variables. b df = 1,28 for time variables

**p<.01; *p<.05; +p<.10
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412As performance was significantly related to prior knowledge, we included prior knowledge
413as a covariate. As mentioned above, we conducted two separate analyses with the
414independent variable learning setting: conceptual individual vs. conceptual collaborative,
415and procedural individual vs. procedural collaborative.
416In both the conceptual and the procedural conditions, students who worked in a
417collaborative setting showed better performance during the learning phase than students
418who solved problems individually (see Tables 3 and 4). In the conceptual conditions, we
419found a marginally significant effect of the setting; descriptively, dyads made fewer errors
420than students who learned individually. In the procedural conditions, we found a significant
421difference between conditions; again, dyads had a lower error rate than students working
422individually.

423Learning processes: Time variables The time variables served as a first indicator for
424learning processes. Again, we employed an analysis of variance with learning setting as the
425independent variable. In addition, we correlated the time variables with students’ outcome
426in the respective near transfer problem-set as we wanted to see if the learning processes
427were related to students’ learning outcome as assessed in the post-test. For the correlation
428analyses, we will only report significant results.
429Depending on the type of instruction, the learning setting influenced the time variables
430in opposite directions. In the conceptual conditions, dyads spent significantly more time
431before actions and time after errors than individuals (Table 3). The time variables were
432positively related to the conceptual understanding in the post-test: Students who had spent
433more time before actions and more time after errors during the learning phase showed
434better learning outcomes in the conceptual near transfer problem-set (r=.47, p<.01 and
435r=.61, p<.01, respectively). This suggests that collaborative learning with conceptual
436instructional material may have increased elaborative learning processes that promoted
437conceptual understanding.
438In contrast, in the procedural conditions dyads spent less time before actions than
439students working individually (Table 4). While the analysis of the variable time after error
440did not reach significance, the result pointed in the same direction. This indicates that

t6.1 Table 6 Post-test: comparison of students’ procedural knowledge acquisition

t6.2 Instructional material: Conceptual Procedural F p η2

t6.3 Setting: Ind Coll Ind Coll

t6.4 Procedural near transfer

t6.5 M 56% 59% 72% 71% Prior knowledge 45.83 <.01** .38

t6.6 SD 20% 29% 18% 22% Factor instruction 16.26 <.01** .18

t6.7 Factor setting .33 .57 .00

t6.8 Interaction .76 .39 .01

t6.9 Procedural far transfer

t6.10 M 67% 74% 89% 79% Prior knowledge 20.52 <.01** .22

t6.11 SD 26% 32% 13% 32% Factor instruction 8.11 .01* .10

t6.12 Factor setting .77 .38 .01

t6.13 Interaction 3.08 .08+ .04

df = 1,74 for all analyses

**p<.01; *p<.05; +p<.10
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441collaboration may not have promoted mutual elaboration on the procedural instructional
442material. Neither time before action nor time after error correlated with the learning
443outcome in the procedural post-test (for both analyses, p>.10).

444Learning processes: Elaboration dimension As discussed above, the time variables are
445highly objective, but can only provide first indications for the learning processes of
446students. To better understand the differential influence of the setting depending on
447instructional material, we also analyzed think aloud protocols of individuals and the
448dialogue of collaborating dyads.
449We compared the process variables elaboration processes and task distribution after
450errors with chi square statistics (unit of analysis: occurrence of errors). Furthermore, we
451correlated the learning process codings with the learning outcome in the respective near
452transfer problem-set of the post-test. As the analysis of the error rate had indicated
453significant differences in the number of errors between the individual and collaborative
454condition, the correlation analysis was based on the proportional occurrence of the
455respective behavior to avoid confounding. For the correlation analyses, we will only report
456significant results.
457The comparison of elaboration processes during conceptual instruction revealed a
458significant effect of the setting for error corrected, χ2(2)=9.39, p=.01, and a marginally
459significant effect on student behavior for next step incorrect, χ2(2)=4.87, p=.09 (see
460Fig. 3). The descriptive comparison of the individual and collaborative condition showed
461that collaboration increased elaboration both for errors that were corrected and errors that
462were followed by a subsequent error while reducing the percentage of no elaboration when
463compared to the individual condition. Thereby, elaboration was positively related to the
464learning outcome in the near transfer test (elaboration when next step incorrect—conceptual
465near transfer: r=.63, p<.01), while no elaboration was negatively related to student
466learning (no elaboration when next step incorrect—conceptual near transfer: r=−.58,
467p<.01). Thus, collaboration with conceptual instructional material promoted effective
468learning processes and reduced ineffective learning behavior.
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Fig. 3 Learning processes following errors in the conditions with conceptual instructional material
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469Also in the procedural conditions, individual and collaborative learning processes
470differed significantly for errors corrected, χ2(2)=12.77, p<.01, and next step incorrect,
471χ2(2)=7.04, p=.03 (see Fig. 4). The descriptive comparison of the conditions revealed that
472collaboration increased immediate error correction for errors corrected; however, in
473contrast to the conceptual conditions, it reduced elaboration when compared to individual
474learning. In other words, students hardly explained the error correction to their learning
475partner. For next step incorrect, collaboration more than doubled the percentage of trial and
476error behavior (21% in the individual condition, 44% in the collaborative condition). As in
477the conceptual conditions, elaboration after errors positively correlated with procedural
478knowledge at post-test (elaboration when next step incorrect—procedural near transfer:
479r=.49, p=.03), while trial and error behavior showed a negative correlation with the post-
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Fig. 4 Learning processes following errors in the conditions with procedural instructional material
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480test results (trial & error—procedural near transfer: r=−.42, p=.06). Thus, collaborative
481learning with procedural instructional material did not improve the learning processes, but
482increased the application of ineffective trial and error behavior.

483Learning processes: Task distribution The comparison of the conceptual collaborative and
484the procedural collaborative condition revealed a significant difference in the amount of
485task distribution during error correction (χ2=25.92, p<.01, see Fig. 5). The descriptive
486comparison shows that in the conceptual collaborative condition, mostly both students were
487engaged in error correction (74% of errors) while in the procedural collaborative condition,
488the dyad partners tended to divide labor after errors: Most of the time, only one partner took
489responsibility for the next solution step (49% of errors), and frequently, dyads did not talk
490about the following step at all (none for 19% of errors). The consequential decrease of
491practice in the procedural collaborative condition was related to a lesser learning outcome:
492The percentage of errors corrected by the learning partner negatively correlated with student
493performance in the procedural near transfer test (r=−.47, p=.04).
494

495Post-test performance

496During the learning phase, students in the conceptual conditions and in the procedural
497conditions had worked with different instructional material. In contrast, in the test phase,
498every participant solved both the conceptual and the procedural problem-set. This enabled
499us to evaluate the impact of our four study conditions on conceptual and procedural
500knowledge acquisition with a two-factorial covariance analysis with instructional material
501(conceptual vs. procedural) as factor one, setting (individual vs. collaborative) as factor two,
502and prior knowledge as a covariate. The analysis of factor one can serve as manipulation
503check (did conceptual instruction improve the outcome in the conceptual post-test when
504compared to procedural instruction and vice versa?). The analysis of factor two evaluates if
505collaboration has a general effect as compared to individual learning. Finally, the interaction
506effect evaluates if collaboration has a specific effect on knowledge acquisition depending
507on the type of instructional material.
508A problem often raised concerning the analysis of collaborative learning outcomes is the
509possible interdependence of data points: The individual post-test results of students who
510collaborated during the learning phase may be more similar than the test results of two
511independent learners, yielding an analysis bias (cf. Cress 2008). To address this issue, we
512analyzed the intraclass-correlations between individual post-test scores of dyad partners.
513For three of four outcome measures, we could not find an indication of an interdependency
514of the dyadic values; only for the variable conceptual near transfer, the analysis revealed a
515consequential non-independence (i.e., an intraclass correlation between dyad partners that is
516higher than r=.45 and significant at an alpha level of .20, as defined by Kenny et al. 1998).
517To keep the analyses of the different post-test sets comparable, we did not account for this
518correlation and included both dyad partners in the analysis individually.

519Conceptual near and far transfer The analysis of the conceptual near transfer problem-set
520revealed a positive effect of conceptual instruction on the learning outcome (see Table 5):
521Students in the conceptual conditions were better at deriving equations from story problems
522than students in the procedural conditions (manipulation check). More importantly, the
523positive effect of learning with conceptual instructional material was particularly found for
524students in the conceptual collaborative condition as revealed by the significant interaction
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525effect. In other words: collaboration improved students’ conceptual knowledge acquisition.
526No significant general effect of the factor setting was found.
527Similarly, we found a significant influence of the factor instructional material on the
528conceptual far transfer problem-set with higher test scores in the conceptual conditions
529(manipulation check). While the interaction effect was only marginally significant, the
530descriptive comparison again indicates that conceptual instruction was particularly effective
531for students who had learned in a collaborative setting. The factor setting did not show a
532significant effect.

533Procedural near and far transfer Students in the procedural conditions reached a
534significantly higher test score in the procedural near transfer problem-set than students in
535the conceptual conditions (factor instructional material, i.e., manipulation check; see Table 6).
536However, although descriptively the best results were achieved by students in the procedural
537individual condition, neither the factor setting nor the interaction effect were significant.
538Also in the procedural far transfer problem-set (see also Table 6), the factor
539instructional material had the expected specific effect: Students in the procedural
540conditions detected significantly more computational errors than students in the
541conceptual conditions. The interaction effect was only marginally significant, showing a
542trend for students who had practiced procedures individually to detect more errors than
543students who had practiced procedures together with a learning partner. No significant
544general effect of setting was found.
545

546Discussion

547Summary and discussion of study results

548So far, research findings concerning the effect of collaboration on student learning in
549mathematics have been inconsistent: While some studies found positive effects, others
550found none or negative effects of collaboration on learning (Lou et al. 1996). Upon closer
551inspection, previous studies often confounded conceptual instruction and collaborative
552learning in their learning material and did not distinguish between conceptual and
553procedural knowledge acquisition at post-test. With the aim to increase our understanding
554of when and why collaboration is beneficial, the present study attempted to distinguish
555more clearly between the two knowledge types in both instructional and test material. The
556importance of this differentiation is confirmed by our post-test results: The type of
557instruction had a specific effect on student knowledge acquisition; in other words,
558conceptual instructional material improved conceptual knowledge acquisition, and
559procedural instructional material improved procedural knowledge acquisition.
560Furthermore, we had hypothesized that the type of instruction would influence the
561quality of collaboration and its effectiveness for promoting learning. The results of our
562study partly support this assumption, and the process analyses helped to better understand
563the processes underlying this effect. The analysis of student collaboration confirmed that
564conceptual instructional material was able to stimulate mutual elaboration and explanation
565giving. Under this condition, we found that usually both learning partners were engaged in
566the collaborative activity, while division of labor was rare. The collaboration yielded a
567reduced number of errors during the learning phase as compared to individual learning. But
568more importantly, collaboration also improved the learning processes. Dyads in the
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569conceptual collaborative condition showed an increased amount of elaboration of the
570underlying mathematical concepts as indicated both by the time variables and by the
571analysis of student dialogue after errors. Furthermore, dyads rarely engaged in negative
572learning processes such as trial and error behavior. The correlation analyses confirmed that
573this positive collaboration behavior was beneficial for students’ conceptual knowledge
574acquisition. The positive effect of collaboration was also confirmed by a comparison of the
575post-test results: The conceptual collaborative condition reached the highest test scores in
576the conceptual near and far transfer problem-sets.
577In contrast, collaborative learning with procedural instructional material did not have the
578same positive effect on students’ learning processes and their learning outcome. The
579dependent variables draw the picture of a typical collaboration when practicing to learn
580procedures: Instead of mutual elaboration, collaboration on procedural instructional
581material promoted ineffective learning behavior such as trial and error. Furthermore, dyads
582often took turns in solving the different problem-solving steps and in correcting errors, in
583other words, the student who knew how to solve or correct a problem-solving step did so
584without conferring with his or her partner. Although distributing the task of error correction
585in this way may have contributed to the reduced amount of errors and to the reduced
586amount of time in the collaborative condition, students could not sufficiently benefit from
587the learning opportunities due to the lack of explanations by their partner as confirmed by
588the correlation analyses: When a student’s learning partner corrected most of the errors, the
589student herself showed lower results at post-test. In line with the results of the process
590analyses, we could not find a positive effect of collaboration on the learning outcome:
591Students who had practiced procedures together with a learning partner showed comparable
592or even lower procedural knowledge acquisition than students of the procedural individual
593condition. To conclude, the results of our study revealed that collaboration is particularly
594beneficial for knowledge acquisition in mathematics if the learning material does not so
595much emphasize stepwise problem-solving, but requires elaborative learning activities and
596thus benefits from mutual explanations and joint discussions (see also Renkl 2008).
597In our study we aimed at clearly distinguishing between conceptual and procedural
598knowledge both in the learning and test material. However, it is important to note that the
599two knowledge types are not totally independent (Hiebert and Wearne 1996)—and that it is
600often the goal of instruction to particularly strengthen their dialectic relationship. For
601instance, a high understanding of underlying concepts can help to monitor the
602appropriateness and execution of procedures, thus conceptual knowledge can influence
603the performance in procedural tasks. On the other hand, the execution of procedures can
604positively influence students’ conceptual understanding if the students engage in active
605learning processes and try to understand the underlying principles (Rittle-Johnson 2006).
606Rittle-Johnson et al. (2001) therefore describe conceptual and procedural knowledge as two
607ends of a continuum that influence each other in an iterative way, in other words,
608improvement in one knowledge type can result in improvement in the other knowledge type
609(see also Perry 1991; Rittle-Johnson and Alibali 1999). In our study, we also found support
610for an interrelation between the two knowledge types (small to medium correlations:
611conceptual near transfer—procedural near transfer r=.33, p<.01; conceptual near transfer—
612procedural far transfer r=.23, p=.04; conceptual far transfer—procedural near transfer
613r=.25, p=.03; correlation between the two far transfer tests not significant). Thus, it may be
614an interesting endeavour for future research to evaluate the effect of collaboration on this
615relationship in more detail. Regarding our post-test scales, it is important to note that the
616correlations within each knowledge type were higher than between conceptual and
617procedural knowledge, thus supporting the differentiation we made between conceptual
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618and procedural knowledge acquisition (for the conceptual post-tests, r=.59, p<.01; for the
619procedural post-tests, r=.57, p<.01).

620Limitations of the study results and outlook

621The current study investigated the differential effect of dyadic collaboration for a specific
622domain and in a specific, computer-supported setting. Future studies will have to evaluate if
623the established effects can be generalized to other areas in mathematics, such as geometry
624or arithmetic, to other domains, such as physics or chemistry, and to other settings. Indeed,
625ample research has shown that these factors can affect the impact of collaboration on
626knowledge acquisition. For instance, the meta-analysis by Lou and colleagues (1996)
627revealed that collaborative learning is more effective in mathematics and science instruction
628than in reading or arts, and more effective for dyads and small groups compared to groups
629of five or more learners.
630When considering the limitations of the study, it can be helpful to consider the
631generalizability of our findings separately for conceptual versus procedural knowledge
632acquisition. For conceptual knowledge, elaborative learning processes are central to
633increase knowledge acquisition. As collaboration can particularly promote student
634elaboration, it is likely that different instructional materials and different settings will still
635yield similar results.
636In contrast, several studies indicate that collaboration may not always hamper
637procedural knowledge acquisition. First, variations to the task material could increase
638positive effects of collaboration. For example, a study by Rittle-Johnson and Star (2007)
639revealed that individual learners can increase their procedural flexibility by comparing the
640effectiveness of different solution procedures; if two students engage in mutual elaboration
641when comparing different solution approaches, these positive effects may increase. Second,
642collaboration training or support, for instance through a collaboration script (e.g.,
643Dillenbourg and Jermann 2007), could support positive effects of collaboration on
644procedural knowledge acquisition. Along these lines, Walker and colleagues investigated
645the effect of a peer tutoring script for learning literal equation solving. In a first study
646(Walker et al. 2009) they were not able to establish a positive effect of the script on
647students’ learning outcome. However, in a follow-up study with improved script support
648(Walker et al. 2011), they found a positive script effect. The revised script comprised
649sophisticated adaptive collaboration support that encouraged peer tutors to explain tutee
650errors and to provide elaborative help. The results by Walker and colleagues suggest that
651collaboration support can promote procedural knowledge acquisition if it is successful at
652promoting the right types of interaction amongst students.
653The generalizability of our results may also be influenced by the characteristics of our
654learning setting. Several researchers (e.g., Gweon et al. 2007; Lou et al. 2001) have
655hypothesized that corrective feedback as provided by our learning environment may
656eliminate positive effects of collaboration. Krause and Stark (2004) ascribe this effect to an
657“excess supply” of instruction: Receiving feedback by the learning partner is a major factor
658for the success of collaboration; if the feedback is already provided by the system, the
659feedback by the learning partner may no longer be necessary and elaborative meaning
660making processes may thus be reduced. In our study, the interface in the procedural
661conditions may have particularly provided such an excess supply due to the high level of
662support it provided (i.e., it contained a higher number of text boxes and more feedback
663opportunities per problem compared to the conceptual interface). It is possible that
664collaborative learning with procedural instructional material would have been more
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665beneficial if no (or less) error feedback had been provided. However, it is important to note
666that research findings on the complex interaction of (computerized) feedback and
667collaboration are so far inconsistent, and final conclusions cannot yet be made. For
668instance, in contrast to the studies mentioned above, a study by Ellis et al. (1993) could
669only establish a positive effect of collaboration over individual learning when collaboration
670was combined with corrective feedback; however, when dyads did not receive corrective
671feedback, individuals and dyads reached comparable results.
672While the aspects discussed in the previous sections point at limitations in the
673generalizability of our study results, several studies indicate that our results may be
674generalized to other domains such as physics. For instance, Jonassen (2003) has shown that
675the difficulties students encounter when solving story problems in physics are quite similar
676to their difficulties in mathematics. Often, students find it particularly challenging to
677understand the underlying concepts, while they are able to memorize equations and perform
678the correct problem-solving procedures. Along these lines, a study on learning in physics by
679Gadgil and Nokes (2009) revealed that collaborative learning with worked examples was
680particularly effective in improving conceptual understanding, while procedural fluency did
681not increase.
682The results of our study have important methodological and practical implications. The
683methodological implications concern the question about which dependent variables provide
684valid conclusions on the success of collaborative learning. Researchers and teachers might
685often be tempted to evaluate collaboration based on group performance during
686collaboration as this is the first observable indicator for the success of a collaborative
687activity. However, as our results show, focussing merely on group performance may be
688misleading: Even though collaboration improved the group performance during the learning
689phase in both the conceptual and the procedural conditions, we only established a positive
690effect of collaboration on conceptual knowledge acquisition, while collaboratively
691practicing procedures did not increase procedural skill fluency. In contrast, the analysis of
692student activities during critical situations of the problem-solving process showed
693particularly valuable to indicate the success of collaboration in our study. We evaluated
694the quality of students’ learning processes based on time variables and coding variables.
695While the coding variables are more meaningful and can thus yield a more detailed
696understanding of the dyadic learning processes that are responsible for the effectiveness of
697collaboration, the time variables are easy to assess and can even be analyzed “on-line”.
698Particularly the latter aspect can open up interesting opportunities for future research. For
699instance, the automatic analysis of the time variables may enable scientists to develop
700collaboration support that is adaptive to the dyad’s needs (cf. Diziol et al. 2010a, c). As an
701example, it would be possible to automatically detect if students proceeded too quickly in
702error correction, and to subsequently encourage them to explain the error correction to their
703learning partner. This could reduce trial and error behavior and thus increase the
704effectiveness of collaborative learning with procedural instructional material.
705Practical implications of our study concern guidelines for the implementation of
706collaboration in school settings. The results of our study show that it is crucial to increase
707teachers’ awareness of the fact that collaborative performance does not necessarily yield
708improved individual learning outcomes, and to provide them with pedagogical knowledge
709of when and why collaboration can be beneficial (cf. Krauss et al. 2008). Particularly,
710knowledge on factors that influence the effectiveness of collaboration can help teachers to
711better match the learning setting they choose to the type of instructional material and the
712goals of instruction. Along these lines, our findings can help to support a teacher’s decision
713on whether to implement an individual or a collaborative learning setting: If the goal is for
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714students to acquire conceptual understanding, collaboration can be beneficial; if the goal is
715to support students’ skill fluency, an individual learning setting may be superior.
716Furthermore, our study results provide valuable indicators for teachers to evaluate the
717success or failure of the collaborative activity: If students engage in mutual elaboration,
718they are on the right track; however, if the teacher observes a high amount of task
719distribution between students, he should intervene and encourage them to interact more.
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