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11Abstract While it has been suggested that patterning activities support early algebra
12learning, it is widely acknowledged that the shift from perceiving patterns to understanding
13algebraic functions—and correspondingly, from reporting empirical patterns to providing
14explanations—is difficult. This paper reports on the collaborations of grade 4 students (n=
1568) from three classrooms in diverse urban settings, connected through a knowledge-
16building environment (Knowledge Forum), when solving mathematical generalizing
17problems as part of an early algebra research project. The purpose of this study was to
18investigate the underlying principles of idea improvement and epistemic agency and the
19potential of knowledge building—as supported by Knowledge Forum—to support student
20work. Our analyses of student-generated collaborative workspaces revealed that students
21were able to find multiple rules for challenging problems and revise their own conjectures
22regarding those rules. Furthermore, the discourse was sustained over 8 weeks and students
23were able to find similarities across problem types without the support of teachers or
24researchers, suggesting that these grade-4 students had developed a disposition for evidence
25use and justification that eludes much older students.

26Keywords Early algebra . Collaborative mathematical discourse . Patterns and generalizing
27problems . Knowledge building . Knowledge forum . Epistemic agency

29Introduction

30For the last 2 years we have incorporated a knowledge-building environment—Knowledge
31Forum (Bereiter & Scardamalia, 1989)—into ongoing research of students’ development
32and learning of patterns and functions. While knowledge-building pedagogy, supported by
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33Knowledge Forum, has been shown to support student development of a disposition
34for knowledge building in the domain of science, little has been reported on student use of
35Knowledge Forum in the learning of mathematics (Hurme & Jarvela, 2005; Nason &
36Woodruff, 2002). Thus, one of the goals of our larger ongoing research project has been to
37investigate whether Knowledge Forum, with its underlying knowledge-building principles,
38can promote the kind of inquiry orientation towards mathematics learning that has been
39shown with respect to students’ science learning (e.g., Bereiter & Scardamalia, 1989, 2003;
40Scardamalia, Bereiter, & Lamon, 1996). Specifically, we have been investigating how
41Knowledge Forum can support students in working collaboratively to find algebraic rules
42for mathematics generalizing problems.
43Generalizing problems, also known as numeric sequences or geometric growing
44sequences, present patterns of growth in different contexts. Students are asked to find the
45underlying structure and express it as an explicit function or “rule.” Students often have
46difficulty finding underlying functional relationships for generalizing problems, in part
47because developing useful strategies to discern algebraic rules is challenging, but also
48because students lack the interest or ability to justify their conjectures.
49In this paper we present verbatim Knowledge Forum notes that were created by students
50(9–10 years old) from three grade-4 classrooms connected through Knowledge Forum. We
51incorporated Knowledge Forum in our study to address specifically the kinds of difficulties
52reported in the mathematics education literature. Our hypothesis was that appropriate
53support for knowledge building would help students generalize their understanding of
54functions and provide them with a context to offer justifications. In previous papers we
55have reported on the overall success—in terms of gains in scores on pre- and post-test
56measures—of our larger research project to foster improvements in students’ abilities to
57work with patterns and to find underlying functional rules (e.g., Moss, Beatty, & London
58McNab, 2006). The focus of this study was specifically on students’ problem solving on
59Knowledge Forum. Our analyses for this paper focused on the kinds of multiple rules that
60students found as well as the degree to which students provided justifications for their
61conjectures of rules.
62We begin this paper with a discussion of both the anticipated benefits of generalizing
63problems in mathematics learning and the problems that have been widely reported. Next,
64we present an overview of the larger project and discuss our decision to incorporate
65Knowledge Forum in our work. We also present a brief account of the procedures employed
66in this study. Finally, we present our analyses of the students’ collaborative problem solving
67on Knowledge Forum in order to illustrate the effectiveness of the use of this discourse
68space to support students’ abilities to work with generalizing problems.

69Patterns for early algebra

70In recent years, patterning and algebra have become part of the elementary curriculum in
71many countries (e.g., Greenes, Cavanagh, Dacey, Findell, & Small, 2001; National Council
72of Teachers of Mathematics (NCTM), 2000; Ontario Ministry of Education and Training
73(OMET), 2003, 2005; Warren, 1996, 2000). Q2From a mathematics perspective, the
74introduction of patterns in the early years has many potential benefits for students. Patterns
75offer a powerful vehicle for understanding the dependent relations among quantities that
76underlie mathematical functions (Ferrini-Mundy, Lappan, & Phillips, 1997; Lee, 1996;
77Mason, 1996), as well as a concrete and transparent way for young students to begin to
78grapple with the notions of abstraction and generalizations (Blanton & Kaput, 2004;
79Carraher, Schlieman, Brzuella, & Enrnest, 2006; Cuevas & Yeatts, 2001; English &
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80Warren, 1998; Greenes et al., 2001; National Council of Teachers of Mathematics (NCTM),
812000).
82Underlying this new initiative for early algebra is the hope that an early introduction to
83algebra may serve to diminish the abrupt and often difficult introduction to formal algebra
84in high school (Kieran, 1992) and thus may afford all students access to wider opportunities
85in later mathematics and in career choice (Greenes et al., 2001; Kaput, 1998; Moses, 1997).
86Another claim for including patterns in the curriculum concerns the potential of patterning
87activities to provide a familiar context for students to begin generalizing (Lee, 1996;
88Mason, 1996; Zazkis & Liljedahl, 2002), and for supporting justifications as an introduction
89to algebraic reasoning (Lee & Wheeler, 1987; Radford, 1999, 2000).
90The work that we report in this paper focuses on a specific type of pattern problem—
91generalizing problems. Generalizing problems are usually presented as numeric or
92geometric sequences, and typically ask students to predict the number of elements in any
93position in the sequence and to articulate that as a rule. A well-known generalizing problem
94is the handshake problem, which asks students to predict the number of handshakes
95required to fully introduce a group of people of any number. It has been shown, however,
96that given traditional instruction, students’ approaches to these problems are limited.

97Generalizing problems—limited justifications

98Mason (1996), who has written extensively on fostering generalizing in classrooms,
99observes that it is rare that students engage with these kinds of exercises beyond the most
100limited kinds of mathematical generalizations. As Bednarz, Kieran, and Lee (1996, p. 7)
101note, it has been widely reported that when students are presented with geometric or
102numeric sequences the pervasive strategy “is on the construction of a table of values from
103which a closed-form formula is extracted and checked with one or two examples.” This
104approach, in effect, “short-circuits all the richness of the process” (Mason, 1996, p. 70).
105These same observations are corroborated by Stacey (1989), who noted that when students
106are presented with generalizing problems, they tend to construct rules and generalizations
107too readily with an eye to simplicity rather than accuracy. Cooper and Sakane (1986) further
108reported that once students selected a rule for a pattern, they persisted in their claims even
109when finding a counter example to their hypotheses. Students would rather refute the data
110presented than modify their original rule.
111Hoyles (1998) observed that, even if students can explain how certain inputs lead to
112certain results or outputs, their attempts to justify or prove their conjectures of rules appear
113to be added on rather than inherent to the activity. The propensity of students to develop
114rules based on few examples, and without a disposition to explain why the rule works,
115precludes opportunities to develop the ability to move from particular instances of a pattern
116to a generalized understanding of the underlying mathematical structure. Certainly these
117findings put current practices and expectations for pattern learning into question.

118Analyses of difficulties

119Researchers who have studied patterns and generalizing suggest that it is not generalizing
120problems per se that are difficult, but rather the way that they are presented to students and
121the limitations of the teaching approaches used. Generalizing problems are presented in a
122variety of contexts-geometric, tabular, and narrative—but the tendency of most instruction
123is to prioritize the numeric aspect of patterning (Noss, Healy, & Hoyles, 1997; Noss &
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124Hoyles, 1996) with the result that these become data-driven, pattern-spotting activities in
125which tables of numeric data are constructed using a recursive strategy, and a closed-form
126formula is extracted and checked with only one or two examples. The context and meaning
127of the variables thus become obscured, which severely limits students’ ability to
128conceptualize the functional relationship between variables, explain and justify the rules
129that they find, and use the rules in a meaningful way for problem solving.
130Lee (1996, p. 95) notes that students working with geometric patterns often have
131difficulty perceiving “algebraically useful patterns.” She uses the term “perceptual agility”
132to characterize the ability to see multiple patterns coupled with a willingness to abandon
133those that do not prove useful for rule making. Mason (e.g., 1996), who uses the term
134“multiple seeings,” suggests that students be given opportunities to find multiple kinds of
135patterns and that visualization and manipulation of the figures on which the generalizing
136process is based can facilitate rule finding and formula making.

137The larger study—overall goals

138The research we have been conducting has been designed to address these issues, identified
139in the mathematics education literature. Our goal is to provide learning contexts in which
140students can have the opportunity for “multiple seeings” and to develop “perceptual agility”
141(Lee, 1996). Our research has involved us in designing and assessing particular contexts
142both to foster students’ development and learning of the functional relationships between
143two sets of data, and to support student motivation and interest in providing justifications.
144In our view, it is important to find ways of maximizing the potential of patterning activities,
145since not only are patterns and functions part of the curriculum, but we know they are
146widely enjoyed (Seo & Ginsburg, 2004), at least by young children, and they have an
147appeal and points of entry for older students that cross ability levels (Moss, Beatty, Barkin,
148& Shillolo, to publish in 2008).
149The interventions that we have designed and implemented have two distinct parts
150emanating from two different theoretical frameworks. Case’s theory of mathematical
151development (e.g., Case & Okamoto, 1996; Q3Moss & Case, 1999) served as the basis for the
152design of a set of carefully sequenced lessons intended to foster connections between
153geometric growing sequences and numeric representations as a means of developing
154students’ conceptions of linear functions. The second theoretical framework that has
155informed our research—the major focus for this paper—is Scardamalia and Bereiter’s
156knowledge-building theory and pedagogy, particularly as it is evidenced in their
157knowledge-building software, Knowledge Forum.

158Knowledge forum and mathematics

159Knowledge Forum has not been used extensively in student work in mathematics,
160particularly at the elementary level. There are, however, studies that reveal that elementary
161school students who use Knowledge Forum as part of science learning engage in inquiry
162and become part of a knowledge-building culture. As mathematics education researchers,
163we wondered if the collaborative nature of Knowledge Forum and the knowledge-building
164principles that underlie it—particularly the concepts of epistemic agency and idea
165improvement—might support young students working with generalizing problems and
166help avoid the kinds of difficulties that are described in the mathematics education research
167literature.
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168Our decision to use Knowledge Forum was based on our recognition of the potential of
169this collaborative discourse platform—and the knowledge-building principles that underlie
170it—to provide a context for students to generalize the understanding of functions acquired
171during the initial lesson sequence. We believed that a collaborative knowledge space would
172provide an authentic platform for student discussion. In addition, the software would offer
173students access to multiple perspectives on a variety of rules for different generalizing
174problems. We were also interested to discover if Knowledge Forum and the knowledge-
175building principles would provide a setting of inquiry in which students would be
176motivated to try to provide justifications for their conjectures of rules. On a more general
177level, we had questions about whether students would use the software collaboratively for
178solving generalizing problems or whether they would be more inclined to use the database
179as a repository for their own individual efforts. In addition, we wondered if students’
180contributions would focus on mathematics.1

181Knowledge building principles and mathematics

182While we anticipated that students might benefit from the chance to contribute their theories
183on Knowledge Forum, it was the theoretical framework underpinning Knowledge Forum,
184particularly the emphasis on student agency and the centrality of student’s ideas, that
185influenced our decision to incorporate Knowledge Forum in our research.
186Scardamalia and Bereiter use the term “epistemic agency” to characterize the
187responsibility that the group assumes for the ownership of ideas that are given a public
188life in Knowledge Forum (Bereiter, 2002; Scardamalia, 2002). In this discourse structure, it
189is not the teacher who asks for justifications and evidence of the conjectures of rules that
190students contribute, but rather the students themselves who, with an eye towards moving
191the theorizing forward, take Q4on this responsibility (Moss et al., to publish in 2008).
192A related concept central to knowledge-building pedagogy is the principle that ideas are
193improvable. Students are good at generating ideas, but working deliberately to improve
194them does not come naturally or easily (Scardamalia, 2002). An important feature of
195Knowledge Forum is that notes can be revisited and revised at any time. This, coupled with
196the asynchronisity of the discussion, provides students with an extended time to think.
197Therefore, students working on Knowledge Forum have both the software capability and
198the time to engage in sustained idea improvement.
199Studies of students collaborating on science investigations on Knowledge Forum reveal
200that, as a result of their participation, students become engaged in sustained efforts to
201improve their ideas/theories/solutions (Scardamalia, 2004; Scardamalia et al., 1996). We
202wondered if this same orientation to idea improvement would be found in students working
203on challenging generalizing problems. Specifically, we wondered if Knowledge Forum
204would support students (1) to find multiple rules; (2) to revise their own conjectures of
205rules, and; (3) to provide evidence and justification for their conjectures of rules.
206In the next section we briefly describe the procedures used in this study and go on to
207show the analyses that we conducted and the results found in answer to the questions
208above.

1 In a recent study that incorporated Knowledge Forum in a high-school math program, Hurme and Jarvela
(2005) reported that a significant proportion of notes contributed were “trivial,” that is, the notes did not
address mathematical issues but rather were social in nature.
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209Materials and methods

210Participants

211The data for the present study come from the second year of our project of early algebra and
212patterning (see, for example, Beatty & Moss, 2006; London McNab & Moss, 2006; Moss,
2132005; Moss & Beatty, 2005; Moss et al., to publish in 2008). The students in this study
214were in grade 4 (n=68) and were from three classrooms. One of the classrooms was from a
215university laboratory school and the other two classrooms were from an inner city public
216school serving an at-risk population (high ESL, low SES). All of the students in the study
217had used Knowledge Forum for at least one science project and were familiar with the
218software and processes.

219Procedures

220The overall intervention took place over a 4-month period and consisted of two parts. First,
221the students in the three classrooms participated in a specially designed instructional se-
222quence consisting of 12 lessons taught at a rate of approximately 2/week. The scope of this
223paper does not allow for a description of this instructional intervention (for details of the
224lessons see Moss et al., 2006.) Students were introduced briefly to linear functions of the
225form y=mx and y ¼ mxþ b both numerically, through “Guess My Rule” activities (e.g.,
226Carraher & Earnest, 2003; Rubenstein & Rheta, 2002; Willoughby, 1997 Q5), and visually,
227through pattern building with blocks and ordinal number cards placed under each position
228of geometric growing patterns (see Fig. 1).
229This instruction, based on growing elements in a sequence, provided students with a
230basic understanding of simple multiplicative and composite functions. At no time were the
231students taught any formal algebraic notation; however, as part of the Guess My Rule
232activities, students were taught to use the words input and output to stand for the
233independent and dependent variables, respectively.
234The Knowledge Forum activities made up the second part of the intervention. For this
235part of the study the students from the three classrooms in the two schools were linked
236electronically and invited to collaborate on solving six generalizing problems in which they
237were required to discern a functional relationship between two sets of data in order to find
238and express a generality. The problems were comprised of linear and quadric functions

Fig. 1 Geometric pattern with
position cards. This pattern fol-
lows the functional rule y ¼
5xþ 3
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239embedded in various contexts. (Please see Appendix for presentation of all six problems).
240The generalizing problems were chosen for this study as a means of extending the students’
241reasoning about functional relationships. These generalizing problems were more complex
242in that not all rules conformed to the y ¼ mxþ b structure that was used for all of the
243patterns in the instructional sequence. Two of the problems chosen followed the form
244y ¼ mxþ b (Linear Pair 1). We also included two problems of the form y ¼ mx� b (Linear
245Pair 2), and two problems of the form y ¼ x2 � xð Þ�2 (Quadratic Pair). In addition, there
246were multiple potential rules for each problem.
247Each problem comprised its own Knowledge Forum view. Figure 2 presents one of the
248views of this study (the Perimeter Problem, also known as the Shaded Square Problem
249[e.g., Steele, 2005; Steele & Johanning, 2004]). The small squares shown in this figure
250represent notes that students created and the connecting lines show the links between notes
251created as students read and responded to each other’s contributions.
252Figure 3 is an example of a student note as it appears in the database (the content of this
253note will be discussed in a later section of this paper). Each note contains a space for
254composing text. The metacognitive scaffolds2 appear at the far left of each note. Students
255can also use Knowledge Forum’s graphics palette to create illustrations, or they can scan
256drawings, function tables or photographs to support their explanations.
257Below is the text of the student note shown in Fig. 3. Each note that we present is taken
258verbatim from the Knowledge Forum database. Each note was given a code based on the
259problem view to which it was contributed—all notes were numbered in chronological order
260as they were posted to the six different views (notes were numbered starting from 1 for each
261of the views). In the example note, PP19 refers to the fact that this note was the 19th note
262contributed to the Perimeter Problem View. Revisions to notes were coded with a lowercase
263‘r’ followed by the revision number. So, for example, all revisions to the note below would
264be coded as PP19r1, PP19r2, etc. All notes were given a title, indicated by bold text, by the
265student(s) who posted them—the note in the example below is titled “Relationships.”
266Authorship is indicated by the student’s first and last initial. Any metacognitive scaffolds
267are indicated through the use of italics. The scaffold selected by NS in this note is “my
268theory.”

269PP19 Relationships—NS
270My theory is that the Output # is = to the input # times 4-4. My evidence is that
2713� 4 ¼ 12 and −4 is 8 which is the output. You need to multiply the input×4[only one
272side] because without multiplying you wouldn’t get 12. Then when you minus another #
273besides 4 the output wouldn’t be 8. The same rule applies for all the other numbers. Like:
274100� 4 ¼ 400� 4 ¼ 396 10� 4 ¼ 40� 4 ¼ 36 14� 4 ¼ 56� 4 ¼ 52

276Prior to working on the database, students were instructed that they would be working
277on difficult mathematics problems, and that they would have to work together in order to
278solve them. Once students began working on the problems on Knowledge Forum, the
279database was entirely student managed. Students were not provided with answers, nor were
280they told if their answers were correct or incorrect. The researchers and teachers did not
281post any notes on the database. The Knowledge Forum database was available to students
282over an 8-week period. On average, each student had approximately half an hour to 45 min/
283week to work on the database.

2 Metacognitive scaffolds for knowledge building include my theory, I need to understand, new information,
a better theory, and putting our knowledge together They are designed to encourage students to engage in
theory building while they write their notes (Scardamalia, 2003). Q3
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Fig. 3 Student note

Fig. 2 Perimeter problem view
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284Results

285Participation on the database

286We began our analyses by conducting frequency counts of all of the notes that the students
287from all of the three classrooms contributed to the series of six generalizing problems. Each
288note was read and coded by the researcher (second author) and one or more research
289assistants.
290In all, 247 notes were posted with individual contributions ranging between 3 and 18
291notes per student. Furthermore, these notes were evenly distributed across the three
292classrooms. In our interest to discover if the students were motivated to read each others’
293contributions, we coded the notes to differentiate between those that were originals—
294notes created by a student or pair of students that presented a thought or conjecture that
295was not in response to another student’s note—and those that were written in response to
296the note of another student. Our analyses revealed that 30% of all of the notes were
297original notes, and the remaining 70% of notes were responses. This indicated to us that
298students were reading and building on the ideas of others rather than simply posting
299individual ideas. In addition, we discovered of the responding notes that only 28% were
300social-support notes containing comments such as “good job,” or “I like your theory.” Thus,
301we could see from these initial counts that the students, without teacher input, were
302motivated and interested to work on the mathematics of the generalizing problems. In the
303next sections we consider the content of student notes as they relate directly to our central
304research questions: the finding of multiple rules, the revision of rules, and the provision of
305evidence and justifications.

306Multiple seeings: Proposing and negotiating multiple rules

307Throughout the database we found evidence of students finding multiple rules. For each of
308the six problems posted, the students came up with a minimum of two different rules.
309For the Perimeter Problem view, students generated and posted five different rules (see
310Appendix), the three most common of which will be discussed in this paper. The Perimeter
311Problem has been used in studies by other investigators and has been shown to be
312challenging for even high-achieving older students (Steele & Johanning, 2004). In this
313problem, students are asked to find a rule that will allow them to predict the number of
314squares in the perimeter of a square of grid any size.
315Algebraically, the functional rule for this problem is represented as f xð Þ ¼ 4x� 4. Based
316on multiple possible visual interpretations, however, there are a number of different ways of
317expressing a generalized rule for this problem. Figure 4 illustrates three different rules that
318students in our study discovered, based on three different perceptions of the grid figure. The
319first and most frequently posted strategy is the Overlapping Corners Strategy, which can be
320written algebraically as y ¼ 4x� 4 and is based on a perception of the perimeter as four
321sides composed of x number of squares (4x), with each side “overlapping” or “sharing a
322square” at all four corners (−4). The Area Strategy involves finding the area of the grid in
323terms of the total number of squares, and subtracting the number of squares that make up
324the inner area, leaving the perimeter. Algebraically this is represented as the rule
325y ¼ x2 � x� 2ð Þ2. The Doubling Sides Strategy (which will be illustrated in a later
326section) is based on doubling the number of squares along one side of the grid, and then
327doubling the number of squares along the remaining sides, y ¼ 2xþ 2x� 2ð Þ.
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328As we read through the notes for this problem we discovered that initially most of the
329students came up with the rule y ¼ 4x� 4. Notes PP16 and PP17 are representative of the
330way students offer their ideas about rules.

331PP16 Now I have the rule—SW

332I figered out the rule and it is the number times 4 ( the four sides) minus 4 (becuase
333you use one twice at each corner

334PP17 A buildon—SRV

335I agree with you s.w because i know the rule is times 4−4 and ×4 is the 4 sids and−4
336is when you−4
337

However, as work on this problem proceeded, the students became aware of different
339ways of “seeing” the problem. In the discussion below, a student posted a rule based on the
340Area Strategy. What followed was a negotiation, during which students had to work to
341understand the perspectives of other students in order to accept the idea of multiple problem
342perceptions and the associated multiple (correct) solutions. The notion that there could be
343more than one solution was taken up by students in all three classrooms in a sustained
344discussion that broadened their understanding of mathematical problem solving. This
345discussion began with a solution posted by a student, AW, (PP38) which she titled
346‘Eureka!.’3

Fig. 4 Three solutions to the perimeter problem

3 Students were not taught symbolic notation, or how to represent variables, and so used the letter n to
represent any number.
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347PP38 Eureka! A.W.

348for the 5×5 question you do 5� 5 ¼ 25 the square of 25 is 5 and you minus two from
349the square and square that then minus it from your original number and you have your
350answer! First i drew the five by five grid and there was nine in the middle to take away—
3513� 3 ¼ 9

352so then i figured out a 6×6 square was 36 and i know that inside there would be a 4×4
353square to take away so the difference between 6 and 4 is 2 —so it was 36� 16 ¼ 20
354then 17� 17 ¼ 289 the square root is 17 then minus 2 from 17 which is 15 (because
355before there was 2 difference like between 6 and 4) and then 15� 15 ¼ 225 then i
356minused 225 from 289 and got 64n� n ¼ n squared� n� 2ð Þsquared - so minus
357(n−2)squared from nsquared
358

In response to AW’s note, SI posted a note (PP40) in which he offered a different rule
360based on the Overlapping Corners Strategy.

361PP40 Another rule—SI

362I have another rule for you and it is the output ×4−4. In the rule it is ×4 because there
363is 4 sides in a square. It is −4 because when you multiply 4 you are repeating the
364corners twice so you −4.
365

In her response to SI, (PP42), AW speculated that there may be more than one solution
367to the problem.

368PP42 2 rules—AW

369but there might be two rules because we got the same answer for both so i think there
370is more then 1 way to figure the problem out
371

Another student, GA, then questioned AW’s rule, not on the basis of whether it yields
373the correct answer, but rather on the basis of elegance. She titled her note “Both right?”

374PP43 Both right?—GA

375I agree with you and disagree with you because you’ve got the answer but in a
376complicated way. I disagree with you because there’s an easier way than taking the
377square of 25, subtracting 2 from it and square that and then subtract that from your
378original answer. I got the rule times 4 −4 because a square has 4 sides and you don’t
379count the corners twice. I agree with you because for the first few questions you got it
380right.
381

At this point in the discussion AW became firm in her conjecture that there is more than
383one solution to the problem.

384PP46 Two Ways—AW

385Why can’t there be two ways. There are different ways to do lots of different problems
386i think you can have two ways n� n ¼ n squared� n� 2ð Þsquared − so minus (n−2)
387squared from n squared works and ×4−4 works
388

While it was in their discussion on the Perimeter Problem that students first encountered
390the idea of multiple rules, our analysis indicated that as the students gained experience and
391posted answers for more difficult problems, they developed a general acknowledgement of
392the validity of having more than one correct solution, and the offering of multiple rules
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393became a regular part of their work on these problems. As illustrated in the note below
394(contributed as a solution to the Pattern Kingdom problem, which is similar to the
395Handshake Problem), AN acknowledged the rules of two other students and the fact that
396both rules work for every case.

397PK4 Rule—AN

398My theory is that there are two rules sri’s and mine and gauthman’s. So the rule is
399n� n� 1ð Þ=2 or n� n� n=2. it works for everyone.

400Revision of notes... improving ideas
401There are examples throughout the literature that reveal how students resist changing
402initial conjectures of rules even in the face of contradictory evidence. In this section of the
403results we present analyses of students’ work on revising their ideas. An important feature
404of Knowledge Forum is that notes can be revisited and revised at any time. To answer our
405second research question we counted the number of times that students revised their own
406notes in each problem view. Each time a student added or modified an idea in their note it
407was counted as a revision. In all, for the 6 problems in the database, there were 194
408revisions, with a spread of 0–11 revisions per note.
409In the first example, taken from the Handshake Problem view, we present a discussion in
410which a student, GN, was prompted to revise his conjecture. In this discussion GN posted
411his original idea, which was then questioned by two other students.

412HP15 Handshake Problem—GN

413My theory is that the rule is the input + the output − (minus) the input. I will make a
414t-table and see if my rule applies.
415

# of people # of handshake
4192 1
4213 3
4234 4246

HP16 I think—AM

427thats a good theory but you need to figure out the output. this pattern does not really
428explain how to figure out the output

429HP17 right—AH

430I agree with you because GN’s rule needs the output but that is why we need the rule.
431It is like a rule has to be done with the input to find the output.

432The handshake problem is challenging for both students and adults because it is based
434on a quadratic function. Typically, students solve this problem using a recursive strategy of
435noting a pattern of differences in the output (number of handshakes) column. In his initial
436pattern spotting, GN described the numeric pattern he discovered moving from input to
437output column—“the input plus the output minus the input equals the output”—without
438seeming to realize that his rule is essentially aþ b� b ¼ a. The limitation of this rule was
439recognized by other students. They pointed out that GN’s “rule” depends on knowing the
440values for both the input and output number, and therefore it cannot be applied to find
441unknown output numbers from known input numbers. In response, GN then posted another
442theory, which he labeled “the true rule.” He used the metacognitive scaffold “this theory
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443does not explain” referring to his original theory, and then the scaffold “a better theory” as
444he expressed his new rule. Our analysis of his contributions revealed that GN revised this
445second note five times over the course of 2 weeks.

446HR15R5 I found it (the true rule)—GN

447This theory does not explain because I need to know the output and this rule uses the
448output when I need to know the output.

449A better theory is the input times input −input divided by 2. I multyply the input by
450the input because 2 times 2 equals 4 and when i − the input it will equal 2 and 2
451divided by 2=1. This is how I worked it out:

2� 2 ¼ 4� 2 ¼ 2=2 ¼ 1

3� 3 ¼ 9� 3 ¼ 6=2 ¼ 3

4� 4 ¼ 16� 4 ¼ 12=2 ¼ 6

5� 5 ¼ 25� 5 ¼ 20=2 ¼ 10

6� 6 ¼ 36� 6 ¼ 30=3 ¼ 15

7� 7 ¼ 47� 7 ¼ 42=2 ¼ 21

8� 8 ¼ 64� 8 ¼ 56=2 ¼ 28

9� 9 ¼ 81� 9 ¼ 72=2 ¼ 36

10� 10 ¼ 100� 10 ¼ 90=2 ¼ 45

11� 11 ¼ 121� 11 ¼ 110=2 ¼ 55

452
In his response, GN acknowledged the problem with his original rule, and offered a new

456rule that, when applied to the input number, yields the output.
457While GN was prompted by other students to refine his ideas, there were also examples
458in the database of students revising their own ideas without prompting. The note below,
459entitled “Relationship,” was written by a student, NS, who posted a solution to the
460Perimeter Problem but appeared to recognize that her solution was not fully explained. As
461she commented in her note, “I think I still have to think a little more to explain my theory.”

462PP19 Relationships—NS

463My theory is that the Output # is = to the input # times 4 − 4. My evidence is that
4643� 4 ¼ 12 and −4 is 8 which is the output. You need to multiply the input×4[only
465one side] because without multiplying you wouldn’t get 12. Then when you minus
466another # besides 4 the output wouldn’t be 8. The same rule applies for all the
467other numbers. Like: 100� 4 ¼ 400� 4 ¼ 396 10� 4 ¼ 40� 4 ¼ 36 14� 4 ¼
46856� 4 ¼ 52

469I think I still have to think a little more to explain my theory.

470In this note, NS’s solution is based exclusively on a numeric analysis of the data given,
472with the conclusion that only the operations of ×4 −4 would lead to the correct output
473numbers. She stated that her rule would apply for all the other numbers, but is unclear as to
474why this is true. When we analyzed all of NS’s contributions to this note we could see that
475she revised this original note a total of five times over the course of 3 weeks. In her final
476revision (PP19r5), posted 3 weeks after her original entry, she contributed a solution that
477linked her original rule to the structure of the problem itself, which numerous researchers
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478argue reveals a deeper and more conceptual understanding of the problem (e.g., Steele &
479Johanning, 2004; Swafford & Langrall, 2000). Her final revision, similar to GN’s, began
480with the metacognitive scaffold “a better theory.”

481PP19r5 A better theory

482You need to × 4 because you need 4 sides to make a square. Like 3×3 means 3 is the
483length and the other 3 is the width so one length or width×4=to the whole perimeter.

485Whereas NS’s first explanation, based on testing her rule with a series of numbers, was
486more in the spirit of “guess and check,” in this final explanation NS revealed that she was
487aware of why the rule works. She realized that the four in her rule (4n) represents the 4
488sides of a square grid and, as she demonstrated, she can generalize how this would work for
489grids of other dimensions—“Like 3×3 is the length and the other 3 is the width.” This kind
490of revision and rethinking was typical of many of the efforts of other students. Our analyses
491of revisions revealed that the students made use of the time and opportunity to revise their
492notes, and worked on the problems over an extended period of time.

493Justifications and epistemic agency

494In knowledge-building communities, members make progress not only in improving their
495personal knowledge, but also in developing collective knowledge through progressive
496discourse (Bereiter & Scardamalia, 2003; Muukkonen, Lakkala, & Hakkarainen, 2005;
497Oshima et al., 2006). In the preceding sections, while our analyses focused on multiple rules
498and revisions, throughout these examples there is also clearly evidence of students providing
499justifications and evidence for their rules. In this final section of the results we focus
500particularly on the students’ provision of evidence and justifications. Since the students were
501solely responsible for the contents of the database, we were interested in determining the
502extent to which they worked to ensure that their reasoning was fully explained.
503Our analyses of students’ justifications took two forms: a rating of notes in terms of
504levels of justifications offered and a developmental analysis of how students progressed in
505terms of the kind of justifications offered. Notes designated Level 1 were either those in
506which only a conjecture was offered—My theory is that the rule is ×4 −4—or that offered
507social support—good theory!. The next two levels of notes offered evidence to support
508conjectures. Notes coded as Level 2 offered a conjecture with a brief explanation—I figured
509out the rule and it is the number times 4 (the four sides) minus 4 (because you use one twice
510at each corner). We coded notes as Level 3 If they offered a conjecture and evidence and
511included multiple representations, and/or a detailed account of why the rule worked. To
512illustrate the kinds of justifications coded as Level 3 we present three notes composed by
513students that are taken from three of the different problem views.
514The first example (PP9) titled “I got it!” was offered by a student, JF, as an explanation
515for the Perimeter Problem. This note is as an example of a note coded as Level 3 because it
516includes a proposed rule and a clear, contextualized explanation based on this student’s
517particular way of perceiving the problem.

518PP9 I got it!—JF

519i got x+x+(x� 2� 2) and i tried it out for a lot of them and it worked:
5205+5+ 5� 2� 2ð Þ
5215þ 5 ¼ 3� 2
5225+5+6
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52310þ 6 ¼ 16 so that means the rule is x+x+(x� 2� 2) and that’s it! if you seperate
524the question into two you have 5+5 and +(5� 2� 2) so let’s focus on 5+5 and that
525equals 10 and that means that we can do this

528So now we can focus on this part: =(5� 2� 2) so 5� 2 ¼ 3 and the space
529left in the square is 6 and 3×2 is 6 so it’s x+x+(x� 2� 2)

531The second example of a Level 3 note is taken from the Triangle Dot Problem. The
532Triangle Dot problem (Steele & Johanning, 2004) presents students with an illustration of
533two equilateral triangles, one of which is made up of nine dots with four dots per side, and
534the other made up of 15 dots with six dots per side. The challenge for this problem is to find
535the number of dots that would be needed to make a triangle with n dots per side. In the note
536below, a student (KD) explains why his rule ×3 −3 (times three minus three) works, based
537on his knowledge of the three-sidedness of a triangle and an understanding that, because the
538sides of a triangle meet at the corners, the dots overlap at these corners and so the extra
539three dots are subtracted.

540TD7 3 corners—KD

541Our theory is that 45 dots are in a 16 dot triangle. 48 dots are in a17 dot triangle. The
542rule is ×3 −3. We figured out it—the rule—by knowing there are 3 sides to a triangle.
543It always stays 3 no matter what because it doesn’t matter how much dots there are to
544a side. So that means it’s ×3. But I thought how could a 4 dot triangle have 9 dots. An
545answer popped out of my head. 1 corner shares 2 sides so theres no need for the extra
546dots in 3 corners. So I took them away. I then thought the rule was ×3 −3 and it
547worked!

549As can be seen, this student and his group were committed to generating a rule and
550illustrating how this rule would work for various sized triangles.
551The final example of a Level 3 note that we present, confidently titled “Right Answer,”
552is taken from the Handshake Problem view and offers a detailed explanation of why a rule
553works.

554HP2 Right Answer—AN

555My theory is that the pattern rule is that the #of handshakes are equal to the total#of
556people. The rule is n� n� 1ð Þ=2 in other words we have to times the number befor
557the actual input and then divide by 2.we need to minus 1 because we are not shaking
558hands with ourselves.we have to handshake with everyon else execpt ourselves so it
559has to be n×(n−1).We have to divide 2 because 2 people make one handshake. It
560works for 2 like 2� 2 the input� 1 ¼ 1ð Þ ¼ 2=2 ¼ 1. number 3 is also works 3�
5613 the input� 1 ¼ 2ð Þ6=2 ¼ 3 it works for four 4� 4 the input� 1 ¼ 3ð Þ12=6 ¼ 2. SO
562for 5 it should be 10 because 5� 5� 1 ¼ 4ð Þ20=2 ¼ 10. so if we try for 10 it should
563be 10� 10� 1 ¼ 9ð Þ90=2 ¼ 45. Then we must try 100� 100� 1 ¼ 99ð Þ9900=2 ¼
5644950. I shall tell the handshakes for 10,000 is 49,995,000 in other words 49 million
565995 thousand handshakes. Incase some people don’t know what n is it is input.

566In this note, AN offered a rule of the input number multiplied by one less the input number
567divided by two, or n(n−1)/2. This version of (n2−n)/2 is clearly derived from the context of
568the problem, as AN relates each component of his rule to the problem situation. As he
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569clearly explains, every person shakes hands with every person less one (themselves), but
570since two people make a handshake this total number can be divided by two. He then offers
571proof in the form of examples and has included very large numbers in order to illustrate the
572robustness of his theory.
573These three examples show the students’ desire to explain to others the reasoning behind
574the rules offered. They explain why the rule works in the context of the problem given and
575why the rule would work for any instance or iteration of the pattern. We observed that as
576the students worked on increasingly difficult problems, their commitment to offering
577detailed explanations also increased. Specifically, we noticed that there was an increase in
578Level 2 and Level 3 notes posted as students progressed through the database. Our analyses
579revealed that whereas only 42% of notes written in response to the first two problems
580posted on Knowledge Forum included justifications, approximately 70% of notes written in
581response to the last four problems included at least one justification and were coded as
582either Level 2 or 3. Our analysis of the database revealed that the majority of students
583moved through the problems in chronological order, starting with the first pair of linear
584problems and finishing with the quadratic problems. Thus, it appears that as students
585became more experienced in working in Knowledge Forum, they became more
586sophisticated and more mathematically oriented in their offering of evidence and
587justification. Table 1 shows the levels of notes as a function of Problem Pair in
588chronological order.
589In addition (and noteworthy), while our analyses revealed that the students became more
590committed to more elaborate offerings, further analyses also revealed that with time spent
591on solving problems there was an unexpected finding; namely, that the students went
592beyond strictly focusing on individual problems to recognizing the structural similarities
593across pairs of problems presented.

594Structural similarity—meta-rules

595As part of our selection of problems for this research study we chose to include pairs of
596problems that were structurally similar. Steele and Johanning used a similar methodology in

t2.1Table 1 Level of justification of note as a function of problem pair
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597their research study with a small group of high ability 7th grade students. While the goal of
598their study included determining students’ abilities to find the similarities, we did not
599expect that our young students would achieve this level of generalization as they worked
600independently on the database.
601We believe that it is important to consider this unexpected occurrence as we explore the
602potential of Knowledge Forum to support students’ work on generalizing problems and,
603perhaps more generally, for Knowledge Forum and mathematics problem solving.
604Therefore, to conclude our presentation of results, we present examples in which students
605recognized and articulated structural similarities between problems.
606The following note was posted by KD (and friends). In this example we can see that KD
607recognized that a rule based on multiplying the four sides of a square and subtracting the
608four overlapping corners is “just like the triangle dot problem” for which he multiplied the
609three sides of a triangle and subtracted the three overlapping corners.

610PP10 Our Smart Solution (to the perimeter problem)—KD, ABH, MB
611Our theory it’s just like the triangle dot problem.....Yes there is a rule and the rule is ×
6124 −4. We figured it out by using blocks to make the squares we know that there are
6134 sides to a square. So whatever the × square it is you times it by 4. but when we made the ×
614squares the corners over lapped so there’s no need for the 4 corners. So that means − 4.
615Our evidence is that we tried it for each × square and it matched the correct number of
616shaded squares.

617Similarly, we present the following two notes from the Pattern Kingdom Problem, a
618problem that is structurally identical to the Handshake Problem. Both AN and GN, whose
619answers for the Handshake Problem are in previous sections of this paper, realized that the
620Pattern Kingdom is essentially the same problem and that, therefore, the rule for both is the
621same.

622PK5 same rule—AN
623My theory is that this has the same rule as the handshake problem since they are the
624same numbers. see in handshake problem view, right answer AN.

625PK11 Same as handshake—GN
626My theory is that it is the same rule as the handshake problem, which is the input times
627the input - the input divided by 2.

2� 2 ¼ 4� 2 ¼ 2=2 ¼ 1

3� 3 ¼ 9� 3 ¼ 6=2 ¼ 3

4� 4 ¼ 16� 4 ¼ 12=2 ¼ 6

631Summary of the overall results

632The notes and discussions that we have presented are representative of the kinds of postings
633that we found throughout the database for the series of six problems. The literature
634reporting the limitations of students’ work with generalizing problems suggests that it is
635rare to find the offering of multiple rules and revisions of conjectures. Furthermore, the
636provision of justifications and evidence not only eludes most students in their work with
637generalizing problems, but is a general weakness noted throughout the mathematics
638education literature (e.g., Healy & Hoyles, 1999; Jacobs et al., 2006).
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639Discussion

640Research questions revisited

641This study looked at the utility of Knowledge Forum to support students’ work in solving
642generalizing problems. It is well known that while generalizing problems are considered to
643provide grounding in algebraic reasoning, there is strong evidence that the transition from
644patterns to algebra is not smooth. Although students may find a rule for a given
645generalizing problem, they do not typically find algebraically useful rules and lack what
646Lee refers to as “perceptual agility,” which she defines as the ability to abandon rules that
647do not work and to find new (better) rules. Furthermore, the literature indicates that patterns
648can offer meaningful contexts for students to begin to grapple with generalizations and
649abstraction. Again, there is a substantial literature reporting that typically students lack the
650rigour required to be able to generalize from useful rules for a given problem to an
651understanding of mathematical structure. This is particularly evidenced by students’ lack of
652commitment to developing justifications for their conjectures of rules.
653The specific issues that drove our Knowledge Forum research were directly related to
654the difficulties that have been identified in the literature about generalizing problems:
655Would Knowledge Forum support students to find rules (or multiple rules) and would they
656revise rules that do not work? Would students (with no teacher input) provide evidence and
657justifications for their conjectures of rules?

658Knowledge forum and generalizing problems

659Our decision to use Knowledge Forum in our research on early algebra was based both on
660what we perceived to be the affordances of the software and on the knowledge-building
661principles that underlie the pedagogy and design of Knowledge Forum. We anticipated that
662the collaborative structure of Knowledge Forum would benefit the students by providing
663them with access to each other’s theories and perspectives on the problems posed in the
664database, and thus support them in finding algebraically useful rules. When we conducted
665our analyses of the database we found that students did, in fact, find multiple rules for the
666problems that were posted (ranging from two to five rules per problem), and that they were
667able to negotiate the idea that there could be more than one rule for a given problem.
668In addition, we also anticipated that the capability Knowledge Forum offers for
669revisions, and the asynchronisity of discussion, would also provide support for students’
670work with generalizing problems. Given that students typically do not attempt to revise
671their rules, we wondered if working on Knowledge Forum would encourage them to do so.
672When we studied the notes that students contributed to the database we discovered that
673students did, in fact, revise their own notes. Furthermore, students returned to and revised
674their original theories for up to 3 weeks after the original note was posted. This kind of
675thoughtful reflection, while part of the goals of current mathematics reform efforts, does not
676happen in most mathematics classrooms.
677The evidence suggests to us that the Knowledge Forum software supported both
678students’ growing awareness of multiple rules and the ability to revise their offered
679conjectures. However, we believe that the knowledge-building principles of improvable
680ideas and epistemic agency underpinned students’ developing dispositions to find and
681revise multiple rules and, in addition, supported the students’ commitment to provide
682evidence and justifications. While it is difficult to find a conclusive way to distinguish
683between the enabling effects of the software and students’ assumption of the knowledge-
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684building principles, our conjecture is that the knowledge-building environment of
685Knowledge Forum was a significant factor in the results.

686Epistemic agency: Evidence, justifications and meta generalizing

687Epistemic agency is defined as the responsibility the group assumes for progressively
688moving the understanding forward and increasing the (mathematical) knowledge base. In
689our study, we could see this push to move the knowledge base forward both in the
690increasing commitment and sophistication of justifications offered by the students—a result
691that has been central to our investigation—as well as in the unanticipated result of students
692finding structural similarities across problems. When we analyzed the database for instances
693of justifications we discovered that the students grew increasingly committed to providing
694evidence and justifications for their conjectures, a commitment that exceeds that reported in
695older populations of students. The justifications these 9- and 10-year-old students provided
696went beyond simple number substitutions to explanations given within the context of the
697specific problem. Students established a community norm of routinely offering notes that
698included explanations of their answers using language, tables of values, symbols, and/or
699images in order to justify their conjectures. Furthermore, our analyses of frequency counts
700revealed that the students’ level and commitment to justifying their notes increased as a
701function of time spent on the database. In our view, this increasing commitment to and
702sophistication of justifications is indicative of the students’ adoption of the principles of
703epistemic agency and idea improvement.
704Perhaps an even more conclusive finding to support our conjecture of students’ adopting
705a knowledge-building culture of practice was the finding that the students spontaneously
706began to notice structural similarities between the problems in the database. While we
707specifically selected structurally similar pairs of problems, we did not anticipate that
708students at this grade level would be inclined to notice or articulate their perceptions of
709these similarities. Finding structural similarities implies a level of generalization that goes
710beyond finding functional rules, and went beyond what we asked of the students.
711The students in all three experimental classrooms had used Knowledge Forum for
712classroom projects in science, and thus were not only knowledgeable about the software
713and processes but also had been part of a culture of inquiry in which student-driven ideas
714and theories were at the centre. Thus, it seems reasonable to speculate that this culture of
715knowledge building established in their work in science influenced their use of Knowledge
716Forum in mathematics. The informal interviews that we conducted with the students at the
717end of the research project support this conjecture. Many students asserted that working on
718mathematics on Knowledge Forum was different from “regular mathematics.” To quote, “In
719regular math you don’t use ‘my theory’ and get to write it down and then get new
720information to help you develop your theory—in regular math you don’t ask people to help
721you find what the rule is.” “This was more fun because we all got to participate and stick
722our ideas together and got to share our thoughts on the computer and we got to know what
723kids outside our school thought about the problem and we could stick all our ideas
724together.” “If your answer is wrong, on KF someone comes and helps you out...even if your
725answer is at first wrong it will be leading to the right answer. KF is about improving ideas,
726you can improve your answer for the rule.”
727Working on mathematics problems in Knowledge Forum was a new experience for these
728students, and in our view what they chose to notice revealed something about the culture of
729knowledge building, idea improvement and epistemic agency in their mathematics learning.
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730Knowledge forum and mathematics further research

731Current ideas of mathematics education call for the establishment of classroom cultures in
732which students “analyze and evaluate the mathematical thinking and strategies of others;
733communicating mathematical thinking coherently and clearly to peers; and make and
734investigate mathematical conjectures” (National Council of Teachers of Mathematics (NCTM),
7352000). However, it has been shown that even teachers who have embraced these goals do not
736necessarily enact them in the classroom (Jacobs et al., 2006). This calls for new approaches to
737mathematics problem solving. The students in this study appear to have acquired a disposition
738to mathematics problem solving that adheres to the goals of reform mathematics. Thus, the
739evidence from this study suggests that it is worth exploring the use of Knowledge Forum
740software and pedagogy in the teaching of mathematics in the elementary school grades.
741Our present study is limited, however, and raises new avenues of exploration. For
742example, one question that arises directly from our study concerns the levels of
743collaboration. The students in our study came from two different schools and, therefore,
744many of the children connected to the Knowledge Forum database had never met. Our
745analyses revealed that the students displayed a high commitment to collaboration as well as
746a high degree of commitment to the mathematics. In future studies it would be important to
747discover if the level of collaboration and the richness of mathematical discussions would be
748found when Knowledge Forum is used for mathematics learning in single classrooms.
749Other, more general issues emerging from this research concern the applicability of
750Knowledge Forum for mathematics learning. Nason and Woodruff (2002), among others,
751have identified the potential limitations of school-based mathematical problems as a site for
752knowledge building. They are concerned with the lack of open-endedness, lack of relevance
753and lack of authenticity in school-type math tasks. In their view, mathematics textbook
754problems do not elicit the multiple cycles of testing and refining that occur as part of
755knowledge building. Our findings indicate that the textbook generalizing problems that we
756used did, in fact, support students in rigorous inquiry and knowledge building. Thus, in our
757view, future research should be conducted that investigates whether other domains of
758mathematics can also be supported by Knowledge Forum.
759Finally, another concern raised in respect to Knowledge Forum and mathematics learning is
760that Knowledge Forum is a text-based discourse space, and therefore does not support symbolic
761representations and tools as a means of communication. Again, our findings do not support these
762concerns. Our results (similar to those of Hurme & Jarvela, 2005) indicated that the text-based
763nature of Knowledge Forum may in fact have benefited the students. Our analyses revealed that
764students made concerted efforts to communicate their ideas by developing a syncopated form
765of mathematical communication (Sfard, 1995) and naturally interwove words, numbers, and
766formal symbols in their interactions with each other. We believe that for these students the need
767to clearly communicate their theories enhanced their mathematical understanding. Further
768research is needed to analyze the nature of this discourse more deeply.

769Appendix

770Six generalizing problems

771Cube sticker problem

772A company makes coloured rods by joining cubes in a row and using a sticker machine to
773put “smiley” stickers on the rods. The machine places exactly one sticker on each exposed
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774face of each cube. Every exposed face of each cube has to have a sticker. This rod of length
7752 (two cubes) would need ten stickers.

778How many stickers would you need for:

779A rod of one cube
780A rod of two cubes
781A rod of three cubes
782A rod of four cubes
783A rod of ten cubes

784How many stickers would you need for a rod of 20 cubes?
785How many stickers would you need for a rod of 56 cubes?
786What’s the rule?

787Table and chairs problem

788Grenvale Public School has decided to include a lunchroom as part of the school’s
789renovations. Mrs. Chen, the principal, found an amazing sale on trapezoid shaped tables so
790she decided to buy many of these tables for the new lunchroom.
791While Mrs. Chen was waiting for her order to be delivered she thought she would draw a
792plan for her lunchroom. Mrs. Chen decided she would place the chairs around the table so that
793two chairs will go on the long side of the trapezoid and one chair on every other side of the
794table.
795This way five students can sit around one table.
796Then she found she could join two tables like this:

799Now eight students can sit around two tables.
800How many students can sit around three tables joined this way?
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801How many students can sit around 56 tables?
802What is the rule?
803How did you figure it out?
804Can you give evidence?

805Perimeter problem

808This is a 3×3 grid of squares with only the outside edge shaded.
809If you had a 5×5 grid of squares where only the outside edge of squares is shaded, how
810many squares would be shaded?
811If you had a 17×17 grid of squares with only the outside edge of squares shaded, how
812many squares would be shaded?
813If you had a grid of 100×100 squares, how many would be shaded?
814What is the rule?

815Triangle dot problem

818Above is a four dot triangle where each side has four dots. It is made using a total of
819nine dots.
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820The next triangle is a six dot triangle. It has a total of 15 dots.
821How many dots would you need altogether for a 16 dot triangle?
822How many dots would you need altogether for a 100 dot triangle?
823What is the rule?

824Pattern kingdom

825In the Pattern Kingdom, each city is connected to the other cities by a road. To make it simple
826for people to get around, there is a road connecting each city with all of the other cities. When
827the Pattern Kingdom only had three cities, there were three roads to connect them.
828When the Pattern Kingdom grew to four cities, there were six roads to connect them so
829that there was a direct route from any city to any other city.
830Now the Pattern Kingdom has 14 cities. How many roads does it have?
831What if there were 32 cities? How many roads would there be?
832Is there a rule?

833Handshake problem

834Imagine that the Maple Leafs won the Stanley Cup and you are at a huge party with
835everyone in Toronto to celebrate.
836Everyone starts to shake hands with other people who are there.
837If two people shake hands there is one handshake.
838If three people are in a group and they each shake hands with the other people in the
839group, there are three handshakes.
840If four people are in a group and they each shake hands with the other people in the
841group, there are six handshakes.
842How many handshakes would there be if there were ten people in the group?
843How many handshakes would there be if there were 100 people in the group?
844Can you use a rule to help you figure this out?
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